
CS 50: Introduction to Computer Science I Scribe Notes
Harvard College Week 1 Wednesday
Fall 2007 Anjuli Kannan

Announcements (0:00 – 13:00)

 Remember to section

 You can now use the course bulletin board on the website. All posts are anonymous. This is a

good way to get a common question answered once for all students, so please make use of it.

 Check out the bulletin board for Dr. Malan’s final project suggestions. Also keep an eye out for

problems on campus that could be solved by a good final project.

Secure File Transfer (13:00-17:00)

 SFTP is a protocol to upload files from your home computer to your FAS account

 First, download and open SecureFX (for Windows)

 Connect to nice.fas.harvard.edu or fas.harvard.edu. It doesn’t matter which one because it all

goes to the same place. (Note that it DOES make a difference when you SSH.)

 You’ll be prompted for your FAS username and password

 When it opens you will see a window showing a graphical representation of your FAS home

directory

 Drag files from your desktop or computer directory into appropriate folder in your ~/cs50/

directory

 You will be prompted to tell if ASCII or Binary

 For pure text (.txt, .c) choose ASCII

 For anything else choose binary (including .sb)

Our First Program (17:00-26:30)

 Here’s the program we wrote and compiled last time (hello1.c)

#include <stdio.h>

int

main(int argc, char * argv[])

{

 printf("hello, world\n");

}

 Let’s look at the various components in detail.

 int main (int argc, char * argv[])

o This is a function. A function is like mini-program that can be called by your program in

order to execute its contents.

o Whenever a C program is run, the computer will automatically look for the main method

to execute. From their, other functions may be called, but it always looks for main first.

o If you don’t have a main method, it won’t compile.

 int printf(const char *format, …);

CS 50: Introduction to Computer Science I Scribe Notes
Harvard College Week 1 Wednesday
Fall 2007 Anjuli Kannan

o Here’s another function, or a miniature program. This particular function prints text to

the screen.

o This time, we’re not writing it, we’re calling it.

o When we use a function like printf(), we are making use of some code that someone

else has already written for us.

o Someone else wrote the code that actually tells the computer to print characters to the

screen, and added it to the UNIX system.

o Now rather than “reinvent the wheel,” we can just call their function

o Notice we are passing the function arguments within parentheses

o Arguments allow you to control the behavior of the function

o In this case, we’re telling it what to print

 #include <stdio.h>

o This tells the compiler we will be using some readymade functions from the stdio library

(namely, printf)

o You must include statements like this at the top of your program so the compiler knows

where to find the necessary code

o You can also write your own libraries of code and tell a program to include them. That

way, you only have to write functions once and then can reuse them in many different

programs.

 “hello, world!\n”

o Notice the sequence \n. We can use the following combinations of characters to

indicate elements of text that there is not a key on our keyboard for:

 \n Newline

 \r Carriage Return

 \t Tab

o What’s the difference between a newline and a carriage return? A carriage return

moves the cursor all the way to the left, but does not necessarily scroll down a line.

o Notice also that the desired text is enclosed with double quotes. What if we want to

actually display a “? What if we actually want to display a /? We use these escape

sequences so as not to confuse the computer:

 \”

 \\

Variable Types (26:30-34:00)

 What can we do with C that we couldn’t do with Scratch?

 The printf function can take variable input

 But when we give it variable input, we have to tell it what type of variable to expect

 Scratch had only one type of variable (number), but C has four types, and when we make a

variable, we have to tell the computer what type of value is going to be stored in it

 char (character) – 8 bits, so you can only have 256 different characters (ASCII)

CS 50: Introduction to Computer Science I Scribe Notes
Harvard College Week 1 Wednesday
Fall 2007 Anjuli Kannan

 int (integer) – 32 bits, so you can represent roughly 4 billion total numbers

o signed int – used to represent both negative and positive numbers, so you can only go

up to about 2 billion

o unsigned int – used only to represent positive numbers, so can be as large as 4 billion

o long – 32 bits

o long long – 64 bits

 float (floating point value, real number) – 32 bits

 double (also real number) – 64 bits, so can be used to store larger or more precise numbers

Format Strings (34:00-40:00)

 When you want to print the value of a variable, you must use a placeholder in the string that

corresponds to the type of the variable:

o %c char

o %d integer

o %e scientific notation

o %E scientific notation

o %f double or float

o %s string

o %u unsigned int

o %x hex

 Example: math2.c – prints out the value of z, 3

int

main(int argc, char * argv[])

{

 int x = 1;

 int y = 2;

 int z = x + y;

 printf("%d", z);

}

 The sizeof() function tells us how many bytes are taken up by a variable

 Example: sizeof.c – prints out the number of bytes in each variable type

int

main(int argc, char * argv[])

{

 /* local variables */

 char c;

 double d;

 float f;

 int i;

 /* report the sizes of variables' types */

 printf("char: %d\n", sizeof(c));

 printf("double: %d\n", sizeof(d));

CS 50: Introduction to Computer Science I Scribe Notes
Harvard College Week 1 Wednesday
Fall 2007 Anjuli Kannan

 printf("float: %d\n", sizeof(f));

 printf("int: %d\n", sizeof(i));

}

 The above outputs the following

char: 1

double: 8

float: 4

int: 4

 Notice that some of the text in sizeof.c is contained in between /* and */

 Anything between /* and */ is called a comment and is not read by the compiler

 Comments are reminders to yourself, explanations of how your code works, or instructions to

your teaching fellow

 Comments are an important aspect of style because they make your code readable

Arithmetic Operators and More Formatting (40:00-49:00)

 C understands all of the arithmetic operators we are familiar with: +, -, /, *

 In addition, we can make use of the modulus operator %

 % tells us the remainder of a division:

o 10 % 2 = 0

o 11 % 2 = 1

 Note that these operators have precedence rules which can be referenced in a C manual or

online

 What if we execute this code? float answer = 17 / 13;

 answer will take the value 1 because 17 and 13 are integers and integer division discards

remainders

 In order to get an exact answer, we must make 13 or 17 a float by doing any of the following

o float answer = 17 / 13.;
o float answer = 17 / 13.0;

o float answer = 17 / (float) 13;

o float answer = 17.0 / 13;

 We can also indicate the width and precision to be used when printing variables in the following

format: %<width>.<precision>f

 Width – how many spaces the number should take up total (including both the number itself

and white space on the left)

 Precision – how many digits to include

 Example: math3.c

int

main(int argc, char * argv[])

{

 float answer = 17 / 13.;

CS 50: Introduction to Computer Science I Scribe Notes
Harvard College Week 1 Wednesday
Fall 2007 Anjuli Kannan

 printf("%.2f\n", answer);

}

 The above will output 1.3

 C is missing two useful variable types: Booleans (true/false) and strings

 We have written a cs50 library that includes these two

 Example: hello2.c

#include <cs50.h>

#include <stdio.h>

int

main(int argc, char * argv[])

{

 string name = "David";

 printf("hello, %s\n", name);

}

