CS 50: Introduction to Computer Science | Scribe Notes
Harvard College Week 1 Wednesday
Fall 2007 Anjuli Kannan

Announcements (0:00 — 13:00)

e Remember to section

e You can now use the course bulletin board on the website. All posts are anonymous. This is a
good way to get a common question answered once for all students, so please make use of it.

e Check out the bulletin board for Dr. Malan’s final project suggestions. Also keep an eye out for
problems on campus that could be solved by a good final project.

Secure File Transfer (13:00-17:00)

e SFTPis a protocol to upload files from your home computer to your FAS account

e First, download and open SecureFX (for Windows)

e Connect to nice.fas.harvard.edu or fas.harvard.edu. It doesn’t matter which one because it all
goes to the same place. (Note that it DOES make a difference when you SSH.)

e You'll be prompted for your FAS username and password

e When it opens you will see a window showing a graphical representation of your FAS home
directory

e Drag files from your desktop or computer directory into appropriate folder in your ~/cs50/
directory

e You will be prompted to tell if ASCII or Binary

e For pure text (.txt, .c) choose ASCII

e For anything else choose binary (including .sb)

Our First Program (17:00-26:30)

e Here's the program we wrote and compiled last time (hellol.c)
#include <stdio.h>

int
main (int argc, char * argvl[])
{

printf ("hello, world\n");
}

e Let’s look at the various components in detail.
e int main (int argc, char * argv[])
o Thisis a function. A function is like mini-program that can be called by your program in
order to execute its contents.
o Whenever a C program is run, the computer will automatically look for the main method
to execute. From their, other functions may be called, but it always looks for main first.
o If you don’t have a main method, it won’t compile.

e int printf(const char *format, ..);

CS 50: Introduction to Computer Science | Scribe Notes

Harvard College

Fall 2007

O O O

o

Week 1 Wednesday
Anjuli Kannan

Here’s another function, or a miniature program. This particular function prints text to
the screen.

This time, we’re not writing it, we’re calling it.

When we use a function like printf(), we are making use of some code that someone
else has already written for us.

Someone else wrote the code that actually tells the computer to print characters to the
screen, and added it to the UNIX system.

Now rather than “reinvent the wheel,” we can just call their function

Notice we are passing the function arguments within parentheses

Arguments allow you to control the behavior of the function

In this case, we're telling it what to print

e #include <stdio.h>

o

This tells the compiler we will be using some readymade functions from the stdio library
(namely, printf)

You must include statements like this at the top of your program so the compiler knows
where to find the necessary code

You can also write your own libraries of code and tell a program to include them. That
way, you only have to write functions once and then can reuse them in many different
programs.

e “hello, world!\n”

o

Notice the sequence \n. We can use the following combinations of characters to
indicate elements of text that there is not a key on our keyboard for:

= \n Newline
= \r Carriage Return
=\t Tab

What's the difference between a newline and a carriage return? A carriage return
moves the cursor all the way to the left, but does not necessarily scroll down a line.
Notice also that the desired text is enclosed with double quotes. What if we want to
actually display a “? What if we actually want to display a /? We use these escape
sequences so as not to confuse the computer:

.\

= \\

Variable Types (26:30-34:00)

e \What can we do with C that we couldn’t do with Scratch?

e The printf function can take variable input

e But when we give it variable input, we have to tell it what type of variable to expect

e Scratch had only one type of variable (number), but C has four types, and when we make a

variable, we have to tell the computer what type of value is going to be stored in it
e char (character) — 8 bits, so you can only have 256 different characters (ASCII)

CS 50: Introduction to Computer Science | Scribe Notes
Harvard College Week 1 Wednesday
Fall 2007 Anjuli Kannan

e int (integer) — 32 bits, so you can represent roughly 4 billion total numbers
o signed int — used to represent both negative and positive numbers, so you can only go
up to about 2 billion
o unsigned int — used only to represent positive numbers, so can be as large as 4 billion
o long—32 bits
o longlong — 64 bits
o float (floating point value, real number) — 32 bits
e double (also real number) — 64 bits, so can be used to store larger or more precise numbers

Format Strings (34:00-40:00)

o When you want to print the value of a variable, you must use a placeholder in the string that
corresponds to the type of the variable:
o %c char

o %d integer

o %e scientific notation
o %E scientific notation
o %f double or float

o %s string

o %u unsigned int

o %x hex

e Example: math2.c — prints out the value of z, 3

int
main (int argc, char * argv][])

{

int x = 1;

int v = 2;

int z = x + y;
printf ("sd", z);

e The sizeof() function tells us how many bytes are taken up by a variable
e Example: sizeof.c — prints out the number of bytes in each variable type

int
main (int argc, char * argvl[])
{
/* local variables */
char c;
double d;
float £;
int i;

/* report the sizes of variables' types */
printf ("char: %d\n", sizeof(c));
printf ("double: %d\n", sizeof(d));

CS 50: Introduction to Computer Science | Scribe Notes
Harvard College Week 1 Wednesday
Fall 2007 Anjuli Kannan

printf ("float: %d\n", sizeof (f));
printf ("int: $d\n", sizeof (i));

e The above outputs the following

char: 1
double: 8
float: 4
int: 4

¢ Notice that some of the text in sizeof.c is contained in between /* and */

e Anything between /* and */ is called a comment and is not read by the compiler

e Comments are reminders to yourself, explanations of how your code works, or instructions to
your teaching fellow

e Comments are an important aspect of style because they make your code readable

Arithmetic Operators and More Formatting (40:00-49:00)

e Cunderstands all of the arithmetic operators we are familiar with: +, -, /, *
e In addition, we can make use of the modulus operator %
e % tells us the remainder of a division:
o 10%2=0
o 11%2=1
o Note that these operators have precedence rules which can be referenced in a C manual or
online
e What if we execute this code? float answer = 17 / 13;
e answer Wwill take the value 1 because 17 and 13 are integers and integer division discards
remainders

e Inorder to get an exact answer, we must make 13 or 17 a float by doing any of the following
o float answer = 17 / 13.;
o float answer = 17 / 13.0;
o float answer = 17 / (float) 13;
o float answer = 17.0 / 13;

e We can also indicate the width and precision to be used when printing variables in the following
format: %$<width>.<precision>f
e Width — how many spaces the number should take up total (including both the number itself
and white space on the left)
e Precision — how many digits to include
e Example: math3.c
int
main (int argc, char * argvl[])

{
float answer = 17 / 13.;

CS 50: Introduction to Computer Science | Scribe Notes

Harvard College Week 1 Wednesday
Fall 2007 Anjuli Kannan

printf ("$.2f\n", answer);

e The above will output 1.3

e Cis missing two useful variable types: Booleans (true/false) and strings
e We have written a cs50 library that includes these two

e Example: hello2.c

#include <cs50.h>
#include <stdio.h>

int

main (int argc, char * argv][])

{
string name = "David";
printf ("hello, %s\n", name);

