
1

Imperative, OO and
Functional Languages

 A “C” program is …
 a web of assignment statements, interconnected by

control constructs which describe the time sequence
in which they are to be executed.

 In Java programming,
 “objects” are sent “messages”.

 In “pure” LISP there is only …
 the evaluation of an expression by function application
 instead of “executing a program,” LISP evaluates a

symbolic expression (s-expr) Dr. Henry H. Leitner

2

Why Learn LISP ???

 "Lisp is worth learning for the profound
enlightenment experience you will have when
you finally get it; that experience will make you
a better programmer for the rest of your days,
even if you never actually use Lisp itself a lot.”
 - Eric Raymond, "How to Become a Hacker"

 For examples of some companies that use LISP,
see http://www.paulgraham.com/apps.html

3

Where Does LISP Come From?

4

Introduction to LISP
 LISP syntax: symbolic expressions

 atoms
 lists of atoms
 lists of s-exprs

 Grammar for symbolic expressions:
 <s-expr> ::= <atom> | <list>
 <list> ::= (<s-expr> *)

 (name-or-description-of-a-function
 arg1 arg2 … argn)

5

Evaluation of S-EXPRs
 Parentheses must be taken seriously!
 Quoting inhibits evaluation (EVAL does the

opposite!)
 NIL is both a list and an atom
 Defining your own functions using DEFUN

 area of a circle

 Other useful functions: IF, +, *, =
 Defining a recursive function: factorial

6

Internal Representation
 LISP lists are stored as linked-lists of records

with CAR and CDR fields

 Diagramming list structure:

car cdr

first rest

fum foo bar

‘(foo bar)(cons ‘fum)

7

Other LISP Functions
 Assignment (side-effects) using SETF, SET
 Lisp Manipulation Functions

 CAR, CDR, CONS, LIST, APPEND

 Predicates
 EQ, EQL, EQUAL, ATOM, LISTP, CONSP, NULL,

ZEROP, PLUSP, MINUSP, EVENP, ODDP,
NUMBERP, SYMBOLP, BOUNDP, >, <, <=, >=, =, /=

 Define a function to recursively compute the
length of a list

8

Predicates
 Summary of commonly confused

primitive predicates:

‘A ‘(A) nil
atom t nil t
lisp nil t t
consp nil t nil
null nil nil t
symbolp t nil t

9

Defining 2 More Functions

 Swap the first and second elements of a list.
 e.g., (swap '(A B C D)) (B A C D)
 (defun swap (lst)
 (cons '(cadr lst)
 (cons (car l) (cddr l))))

 Note: this builds a new list with some structure
shared with L

 Compute the “next even integer” following n
 (defun next-even (n)
 (if (evenp n) n (1+ n)))

10

The Most General Conditional

(cond (test1 s-expr11 s-expr12 … s-expr1n1)

 (test2 s-expr21 s-expr22 … s-expr2n2)

 …
 …

 (testk s-exprk1 s-exprk2 … s-exprknk))

11

Recursion on List Structures
 CAR and CDR take lists apart
 the analog of “subtract 1” (when doing induction

on a number) is taking the CDR of a list
 Our version of the built-in MEMBER function:

 (defun memb (element lis)
 (cond ((null lis) nil)
 ((eq (car lis) element) lis)
 (t (memb element (cdr lis)))))

 Recursion in “two directions” — function OCCURS
 (defun occurs (element lis)

 (cond …

Example of Nested List

12

A
B

X

17

13

Nameless Functions via LAMBDA
 LISP programs are conceived and written with a

mathematical rigor, based upon the formalisms of
“recursive function theory” and the “lambda
calculus.”
 Consider y + (x * y) for the values 3 and 4
 Clarify using the “Lambda notation” of Alonzo Church.
 In LISP, we use a similar notation

 (MAPCAR F L)
 F is a function of one parameter
 L is a list (x1 x2 … xn)

 Produces a list (y1 y2 … yn) where yi = (F xi)

14

Procedural Abstraction
 SUM-INTEGERS computes Σ
 SUM-SQUARES computes Σ
 Now make the function-of-n itself a third

parameter:
 SUM-TERMS computes Σ

 Consider now the infinite series

and define PI-TERM(n) to compute the above

 π
8 = 1

1 * 3 + 1
5 * 7 + 1

9 * 11 + …

n = first

last

last

n = first

n = first

last

n

n2

term-fn(n)

Integration by Summation

 Σ f(a + n.dx + dx/2) . dx

 dx . Σ f(a + n.dx + dx/2)

f(x)

a b

0 1 2 3 4 5

dx
(b-a)/dx -1

n = 0

(b-a)/dx -1

n = 0

16

Symbolic Pattern Matching
 Another kind of search problem: in a linear list

of words (symbols, whatever) to discover
specified patterns.
 Although LISP itself has no built-in pattern-

matching, it’s a good implementation language for
such a function.

 (match pattern data) will return T or NIL
 The pattern may contain “wildcard” variables such

as ? (stand for one symbol) and * (stands for a
sequence of 0 or more symbols)

17

Pattern Matching, part 2
 “Wildcard” examples

 A ? B matches A A B
 but not A B
 nor A B C

 A * B matches A A B
 and A B
 and A X Y Z B

 * X * Y matches any sequence containing
 both X and Y in that order

Additional “Wildcards”

18

 ?variable matches a single atom, and
 assigns that atom to variable

 *variable matches a sequence of ≥ 0
 atoms, and assigns a list of that
 sequence to variable

 Example from Doctor program:
 (cond ((match '(I am worried *blah-blah) userInput)

 (princ (append '(How long have you been worried)
 blah-blah)))

