
0

Computer Science 50
Introduction to Computer Science I

Harvard College

David J. Malan
malan@post.harvard.edu

Week 3

1

Divide and Conquer

2

Parallel Processing
1) Stand up.
2) Assign yourself the number 1.
3) Find someone else that is standing up.

(If no one is standing, remain standing until I call on you.)
4) Add your number to that person’s number;

the total is your new number.
5) One of you should then sit down.
6) If you’re still standing, go back to step 3.

3

Running Time
T (n)

0

2

4

6

8

10

12

14

16

18

20

0 20 40 60 80 100 120

n

T(
n)

n
log n
n/2

4

Running Time
T (n)

Figure from C++: An Introduction to Data Structures, by Larry Nyhoff.

5

Asymptotic Notation
Informally

O
Θ
Ω

6

Asymptotic Notation
Formally

T (n) ∈ O (f (n))

We say that the running time, T (n), of an algorithm is
“in big O of f of n” iff there exist an integer n0 > 0 and
a real number c > 0 such that T (n) ≤ c · f (n) for all n ≥ n0.

T (n) ∈ Θ (f (n))

We say that the running time, T (n), of an algorithm is
“in theta of f of n” iff there exist an integer n0 and real numbers
c1, c2 > 0 such that c1 · f (n) ≤ T (n) ≤ c2 · f (n) for all n ≥ n0.

T (n) ∈ Ω (f (n))

We say that the running time, T (n), of an algorithm is
“in omega of f of n” iff there exist an integer n0 and
a real number c > 0 such that T (n) ≥ c · f (n) for all n ≥ n0.

7

O
In English

O(1) “constant”
O(log n) “logarithmic”
O(n) “linear”
O(n log n) “supralinear”
O(n2) “quadratic”
O(nc) “polynomial”
O(cn) “exponential”
O(n!) “factorial”

8

Searching

9

Linear Search
Pseudocode

On input n:

For each element i:

If i == n:

Return true.

Return false.

10

Binary Search
Iterative Pseudocode

On input array[0], ... , array[n – 1] and k:

Let first = 0.

Let last = n – 1.

While first <= last:

Let middle = (first + last) / 2.

If k < array[middle] then let last = middle – 1.

Else if k > array[middle] then let first = middle + 1.

Else return true.

Return false.

11

Sum Looping
Get it?

int

sigma(int m)

{

int i, sum = 0;

/* avoid risk of infinite loop */

if (m < 1)

return 0;

/* return sum of 1 through m */

for (i = 1; i <= m; i++)

sum += i;

return sum;

} see
sigma1.c

12

Sum Recursion
Get it yet?

int

sigma(int m)

{

/* base case */

if (m <= 0)

return 0;

/* recursive case */

else

return (m + sigma(m-1));

}

see
sigma2.c

13

The Stack, Revisited
Frames

14

Binary Search
Recursive Pseudocode

On input array, first, last, and k, define recurse as:

If first > last then return false.

Let middle = (first + last) / 2.

Else if k < array[middle] then

return recurse(array, first, middle – 1, k).

Else if k > array[middle] then

return recurse(array, middle + 1, last, k).

Else return true.

15

Sorting

4 2 6 8 1 3 7 5

16

Bubble Sort
Pseudocode

Repeat n times:

For each element i:

If element i and its neighbor are out of order:

Swap them.

17

Selection Sort
Pseudocode

Let i := 0.

Repeat n times:

Find smallest value, s, between i and list's end, inclusive.

Swap s with value at location i.

Let i := i + 1.

18

Sorting
Visualization

19

Merge Sort
Pseudocode

On input of n elements:

If n < 2, return.

Else

Sort left half of elements.

Sort right half of elements.

Merge sorted halves.

20

Merge Sort
Pseudocode

T (n) = 0, if n < 2

T (n) = T (n/2) + T(n/2) + O(n), if n > 1

21

Merge Sort

In the worst case,
how long does it take to sort 16 elements?

22

Merge Sort

T(16) = 2T(8) + 16
T(8) = 2T(4) + 8
T(4) = 2T(2) + 4
T(2) = 2T(1) + 2
T(1) = 0

23

Merge Sort

T (1) = 0
T (2) = 2T (1) + 2 = 0 + 2 = 2
T (4) = 2T (2) + 4 = 4 + 4 = 8
T (8) = 2T (4) + 8 = 16 + 8 = 24
T (16) = 2T (8) + 16 = 48 + 16 = 64

24

Sorting
Visualization

25

All Sorts of Sorts

Heap Sort
Insertion Sort

Quicksort
Radix Sort
Shell Sort

...

26

Tradeoffs
Space, Time, ...

27

Computer Science 50
Introduction to Computer Science I

Harvard College

David J. Malan
malan@post.harvard.edu

Week 3

