Computer Science 50

Introduction to Computer Science I

Harvard College

Week 3

David J. Malan malan@post.harvard.edu

Divide and Conquer

Parallel Processing

- 1) Stand up.
- 2) Assign yourself the number 1.
- Find someone else that is standing up.(If no one is standing, remain standing until I call on you.)
- 4) Add your number to that person's number; the total is your new number.
- 5) One of you should then sit down.
- 6) If you're still standing, go back to step 3.

Running Time

3

Running Time

log ₂ log ₂ n	log ₂ n	n	n log ₂ n	n ²	<i>n</i> ³	2 ⁿ
	0	1	0	1	1	2
0	1	2	2	4	8	4
1	2	4	8	16	64	16
1.58	3	8	24	64	512	256
2	4	16	64	256	4096	65536
2.32	5	32	160	1024	32768	4294967296
2.6	6	64	384	4096	2.6×10^{5}	$1.85 imes 10^{19}$
3	8	256	2.05×10^{3}	6.55×10^{4}	$1.68 imes 10^{7}$	$1.16 imes 10^{77}$
3.32	10	1024	1.02×10^{4}	1.05×10^{6}	1.07×10^{9}	$1.8 imes 10^{308}$
4.32	20	1048576	2.1×10^{7}	$1.1 imes 10^{12}$	1.15×10^{18}	6.7×10^{315652}

TABLE 7.1 COMMON CO	MPUTING TIME	Functions
-------------------------------------	--------------	-----------

Asymptotic Notation

Asymptotic Notation Formally

 $T(n) \in O(f(n))$

We say that the running time, T(n), of an algorithm is "in big O of f of n'' iff there exist an integer $n_0 > 0$ and a real number c > 0 such that $T(n) \le c \cdot f(n)$ for all $n \ge n_0$.

 $T(n) \in \Theta(f(n))$

We say that the running time, T(n), of an algorithm is "in theta of f of n'' iff there exist an integer n_0 and real numbers $c_1, c_2 > 0$ such that $c_1 \cdot f(n) \le T(n) \le c_2 \cdot f(n)$ for all $n \ge n_0$.

 $T(n) \in \Omega(f(n))$

We say that the running time, T(n), of an algorithm is "in omega of f of n'' iff there exist an integer n_0 and a real number c > 0 such that $T(n) \ge c \cdot f(n)$ for all $n \ge n_0$. **O** In English

- :: O(1)
- :: *O*(log *n*)
- :: *O*(*n*)
- :: *O*(*n* log *n*)
- :: O(n²)
- :: *O*(*n*^c)
- $:: O(c^n)$
- :: *O*(*n*!)

"constant" "logarithmic" "linear" "supralinear" "quadratic" "polynomial" "exponential" "factorial"

Searching

Linear Search Pseudocode

On input n:
 For each element i:
 If i == n:
 Return true.
 Return false.

Binary Search Iterative Pseudocode

```
On input array[0], ..., array[n - 1] and k:
Let first = 0.
Let last = n - 1.
While first <= last:
Let middle = (first + last ) / 2.
If k < array[middle] then let last = middle - 1.
Else if k > array[middle] then let first = middle + 1.
Else return true.
Return false.
```

Sum Looping Get it?

```
int
sigma(int m)
{
    int i, sum = 0;
    /* avoid risk of infinite loop */
    if (m < 1)
        return 0;
    /* return sum of 1 through m */
    for (i = 1; i <= m; i++)</pre>
        sum += i;
    return sum;
}
                                   see
```

sigma1.c

Sum Recursion Get it yet?

```
int
sigma(int m)
{
    /* base case */
    if (m <= 0)
        return 0;
    /* recursive case */
    else
        return (m + sigma(m-1));
}</pre>
```


The Stack, Revisited Frames

foo() foo()'s parameters main() main()'s parameters

Binary Search Recursive Pseudocode

On input array, first, last, and k, define recurse as: If first > last then return false. Let middle = (first + last) / 2. Else if k < array[middle] then return recurse(array, first, middle - 1, k). Else if k > array[middle] then return recurse(array, middle + 1, last, k). Else return true.

Repeat n times: For each element i: If element i and its neighbor are out of order: Swap them.

Selection Sort Pseudocode

```
Let i := 0.
Repeat n times:
Find smallest value, s, between i and list's end, inclusive.
Swap s with value at location i.
Let i := i + 1.
```


Merge Sort Pseudocode

On input of n elements:
 If n < 2, return.
 Else
 Sort left half of elements.
 Sort right half of elements.
 Merge sorted halves.</pre>

Merge Sort Pseudocode

T(n) = 0, if n < 2

T(n) = T(n/2) + T(n/2) + O(n), if n > 1

Merge Sort

In the worst case, how long does it take to sort 16 elements?

Merge Sort

- T(16) = 2T(8) + 16
- T(8) = 2T(4) + 8
 - = 2T(2) + 4
 - = 2T(1) + 2
 - = 0

T(4)

T(2)

T(1)

Merge Sort

<i>T</i> (1)	= 0		
T (2)	= 2T(1)	+2 = 0 + 2	= 2
T (4)	= 2T(2)	+ 4 = 4 + 4	= 8
T (8)	= 2T(4)	+ 8 = 16 + 8	= 24
T (16)	= 2T(8)	+ 16 = 48 + 16	= 64

Sorting Visualization

All Sorts of Sorts

Heap Sort Insertion Sort Quicksort Radix Sort Shell Sort

. . .

Computer Science 50

Introduction to Computer Science I

Harvard College

Week 3

David J. Malan malan@post.harvard.edu