

NOTICE TO PODCAST SUBSCRIBERS

The source code for CS 50’s library as well as for Fall 2007’s problem sets in general
can be found at http://cs50.tv/.

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2007

– 1 of 12 –

Problem Set 3: The Game of Fifteen
out of 48 points

due by 7:00 P.M. on Saturday, 27 October 2007

This problem set has more pages than past problem sets, but most contain narrative.

Even so, best to start early, as the programs we’re writing are growing in size.

Goals.

The goals of this problem set are to:

• Introduce you to larger programs and programs with multiple source files.
• Empower you with Make and RCS.
• Acquaint you with pseudorandom numbers.
• Play.

Recommended Reading.

Per the syllabus, no books are required for this course. If you feel that you would benefit from
some supplementary reading, though, below are some recommendations.

• Section 16 of http://www.howstuffworks.com/c.htm.
• Chapters 20 and 23 of Absolute Beginner’s Guide to C.
• Chapters 13, 15, and 18 of Programming in C.

C99.

Starting with this problem set, you are welcome (but not expected or required) to use features of
C99, a version of C newer than that in which most lectures’ source code has been written. Thanks
to C99, you can now prefix one-line comments with just //, and you needn’t declare all of your
variables at the very top of your functions, and more. For even more bells and whistles, follow the
link to A Tour of C99 under Resources on the course’s website.

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2007

– 2 of 12 –

Academic Honesty.

All work that you do toward fulfillment of this course’s expectations must be your own unless
collaboration is explicitly allowed (e.g., by some problem set or the final project). Viewing or
copying another individual’s work (even if left by a printer, stored in an executable directory, or
accidentally shared in the course’s virtual terminal room) or lifting material from a book, magazine,
website, or other source—even in part—and presenting it as your own constitutes academic
dishonesty, as does showing or giving your work, even in part, to another student.

Similarly is dual submission academic dishonesty: you may not submit the same or similar work to
this class that you have submitted or will submit to another. Moreover, submission of any work that
you intend to use outside of the course (e.g., for a job) must be approved by the staff.

All forms of cheating will be dealt with harshly.

You are welcome to discuss the course’s material with others in order to better understand it. You
may even discuss problem sets with classmates, but you may not share code. In other words, you
may communicate with classmates in English, but you may not communicate in, say, C. If in doubt
as to the appropriateness of some discussion, contact the staff.

Grading Metrics.

Each question is worth the number of points specified parenthetically in line with it.

Your responses to questions requiring exposition will be graded on the basis of their clarity and
correctness. Your responses to questions requiring code will be graded along the following axes.

 Correctness. To what extent does your code adhere to the problem’s specifications?
 Design. To what extent is your code written clearly, efficiently, elegantly, and/or logically?
 Style. To what extent is your code commented and indented, your variables aptly named, etc.?

Rest assured that grades will be normalized across sections at term’s end.

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2007

– 3 of 12 –

Getting Started.

0. SSH to nice.fas.harvard.edu and execute the command below.

 cp -r ~cs50/pub/ps/distributions/ps3/ ~/cs50/

 That command will copy the staff’s ps3 directory, inside of which are subdirectories and files

you’ll need for this problem set, into your own ~/cs50/ directory. The -r switch triggers a
“recursive” copy. Navigate your way to your copy by executing the command below.

 cd ~/cs50/ps3/

 If you list the contents of your current working directory (remember how?), you should see the

below. If you don’t, don’t hesitate to ask the staff for assistance.

 fifteen/ find/ questions.txt

 As this output implies, most of your work for this problem set will be organized within two

subdirectories. Let’s get started.

1. (6 points.) Look up your computer’s “specs” online.1 In other words, figure out your

desktop’s or laptop’s make and model (presumably by reading both off some sticker or the
case itself), surf on over to Google or the manufacturer’s website, and find your computer’s
technical specifications. Then, in ps3/questions.txt, tell us six or more of the below.

i. Your computer’s make and model.
ii. The make, model, and speed of your computer’s CPU.
iii. The amount of L1 cache in your computer.
iv. The amount of L2 cache in your computer.
v. The amount of RAM in your computer.
vi. The size of your computer’s hard drive.
vii. The number of keys on your keyboard.

1 If you haven’t your own computer, simply answer these questions for someone else’s computer. The experience will
be the same!

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2007

– 4 of 12 –

Find.

2. Now let’s dive into the first of those subdirectories. Execute the command below.

 cd find

 If you list the contents of this directory, you should see the below.

 helpers.c helpers.h Makefile find.c generate.c

 Wow, that’s a lot of files, eh? Not to worry, we’ll walk you through them.

3. Implemented in generate.c is a “pseudorandom-number generator” (PRNG), a program

that outputs a whole bunch of random numbers, one per line. Actually, these numbers are
generated not so much randomly as they are “pseudorandomly.” Because a computer is a
deterministic device (i.e., it can only do what it’s told to do), it can’t just pick a number off the
top of its head. However, algorithms exist that enable a computer to generate sequences of
numbers that appear to be random in the sense that there’s no obvious pattern to them.
C provides a function called rand() for exactly this purpose. The language also provides a
function called srand() that is used to “seed” the pseudorandom-number generator. To
“seed” a generator means to feed an initial value, s, to its generating algorithm, g. Typically, the
first number returned by such a generator is g (s); the second is g (g (s)); the third is g (g (g (s)));
and so forth. Hence, you can generate the same sequence of “random numbers” simply by
seeding the generator with the same initial value. The current time, often measured in seconds
since some particular moment in the past, is typically used as the seed to a generator so that
the seed is not hard-coded into a program but instead dynamic.

 Anyhow, go ahead and compile this program by executing the command below.

 gcc –ggdb -std=c99 -Wall -o generate generate.c

 Wow, that’s quite the command, eh? It turns out you’ve been executing commands like that

one all along. Prior to this problem set, anytime you typed

 gcc

 it was as though you were typing

 gcc –ggdb -std=c99 -Wall

 because we had “aliased” the former command to the latter to save you keystrokes and avoid

confusion. (Remember cs50setup? That’s one of the things it did for you.) If curious, the
-ggdb switch tells gcc to include “debugging symbols” in your binaries to facilitate debugging
with GDB. The -std=cs99 switch tells GCC that your code might include C99 syntax. And
the -Wall switch tells GCC to report all possible warnings anytime it detects possible
problems with your code.

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2007

– 5 of 12 –

 It’s time for some training wheels to come off, though! We’ve thus deactivated that alias. But
we don’t expect you to start typing ridiculously long commands. We’ll soon equip you with a
better tool. For now, though, go ahead and run the program you just compiled by executing
the command below.

 generate

 You should be informed of the program’s proper usage, per the below.

 Usage: generate n [s]

 As this output suggests, this program expects one or two command-line arguments. The first,

n, is required; it indicates how many pseudorandom numbers you’d like the generate. The
second, s, is optional, as implied by the brackets; if supplied, it represents the value that the
pseudorandom-number generator should use as its seed. Go ahead and run this program
again, this time with a value of, say, 10 for n, as in the below; you should see a list of 10
pseudorandom numbers.

 generate 10

 Run the program a third time using that same value for n; you should see a different list of 10

numbers. Now try running the program twice more, still using that same value for n, but this
time also providing some value for s both times, as in the below; the output of both
executions should be identical.

 generate 10 0

 Think of this last command, with its seed of 0, as having generated the PRNG’s 0th possible

sequence of 10 pseudorandom numbers.

4. (2 points.) Now take a look at generate.c itself with Nano. (Remember how?) Comments

atop that file explain the program’s overall functionality. But it looks like we forgot to
comment the code itself. Read over the code carefully until you understand each line and then
comment our code for us, replacing each TODO with a phrase that describes the purpose or
functionality of the corresponding line(s) of code. Realize that a comment flanked with /*
and */ can span lines whereas a comment preceded by // can only extend to the end of a line;
the latter, again, is a feature of C99. If curious about rand and srand, pull up the URLs
below.

 http://www.cppreference.com/stdother/rand.html
 http://www.cppreference.com/stdother/srand.html

 Or execute the commands below.

 man 3 rand
 man 3 srand

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2007

– 6 of 12 –

 Note that if you instead execute the command below, you’ll pull up the man page for a
program (not function) named rand in section 1 of the Linux Programmer’s Manual.

 man rand

 Functions, by contrast, tend to be documented in sections 2 and 3. To avoid any ambiguity,

then, you sometimes need to tell man the section you want. If curious as to what’s where,
execute, believe it or not, the command below.

 man man

 Once done commenting generate.c, re-compile the program to be sure you didn’t break

anything. Rather than execute that long command from earlier, though, simply execute the
command below.

 make generate

 Henceforth, we’ll be using Make, a tool that “controls the generation of executables and other

non-source files of a program from the program’s source files.” In other words, Make
automates compilation of your code. Notice, in fact, how Make just executed that long
command for you, per the tool’s output.

 How did Make know what to do? Go ahead and look at Makefile with Nano. This

Makefile is essentially a list of rules that we wrote for you that tells Make how to build
generate from generate.c for you. The relevant lines appear below.

 generate: generate.c
 gcc -ggdb -std=c99 -Wall -o generate generate.c

 The first line tells Make that the “target” called generate should be built by invoking the

second line’s command. Moreover, that first line tells Make that generate is dependent on
generate.c, the implication of which is that Make will only re-build generate on
subsequent runs if that file was modified since Make last built generate. Neat time-saving
trick, eh? In fact, go ahead and execute the command below again, assuming you haven’t
modified generate.c.

 make generate

 You should be informed that generate is already up to date. Incidentally, know that the

leading whitespace on that second line is not a sequence of spaces but, rather, a tab.
Unfortunately, Make requires that commands be preceded by tabs, so be careful not to change
them to spaces with Nano, else you may encounter strange errors!

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2007

– 7 of 12 –

5. Now take a look at find.c with Nano. Notice that this program expects a single command-
line argument: a “needle” to search for in a “haystack” of values. Once done looking over the
code, go ahead and compile the program by executing the command below.

 make find

 Notice, per that command’s output, that Make actually executed the below for you.

 gcc -ggdb -std=c99 -Wall -o find helpers.c find.c -lcs50

 Notice further that you just compiled a program comprising not one but two .c files:

helpers.c and find.c. How did Make know what to do? Well, again, open up Makefile
to see the man behind the curtain. The relevant lines appear below.

 find: helpers.c helpers.h find.c
 gcc -ggdb -std=c99 -Wall -o find helpers.c find.c -lcs50

 Per the dependencies implied above, any changes to helpers.c, helpers.h, or find.c will

compel Make to rebuild find the next time it’s invoked for this target.

 Go ahead and run this program by executing, say, the below.

 find 13

 You’ll be prompted to provide some hay (i.e., some integers), one “straw” at a time. As soon

as you tire of providing integers, hit ctrl-d to send the program an EOF (end-of-file) character.
That character will compel GetInt from CS 50’s library to return INT_MAX, which, per
find.c, will compel find to stop prompting for hay. The program will then look for that
needle in the hay you provided, ultimately reporting whether the former was found in the
latter. In short, this program searches an array for some value.

 In turns out you can automate this process of providing hay, though, by “piping” the output

of generate into find as input. For instance, the command below passes 1,024
pseudorandom numbers to find, which then searches those values for 13.

 generate 1024 | find 13

 Alternatively, you can “redirect” generate’s output to a file with a command like the below.

 generate 1024 > numbers.txt

 You can then redirect that file’s contents as input to find with the command below.

 find 13 < numbers.txt

 Let’s finish looking at that Makefile. Notice the line below.

 all: generate find

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2007

– 8 of 12 –

 This target implies that you can build both generate and find simply by executing the below.

 make all

 Even better, the below is equivalent (because Make builds a Makefile’s first target by default).

 make

 If only you could whittle this whole problem set down to a single command! Finally, notice

these last lines in Makefile.

 clean:
 rm -f *.o a.out core generate find

 This target allows you to delete all files ending in .o or called a.out, core, generate, or

find simply by executing the command below.

 make clean

 Be careful not to add, say, *.c to that last line in Makefile! (Why?) Any line, incidentally,

that begins with # is just a comment.

6. Phew, lots of good stuff so far, and it’s almost time to start coding. But one last lesson for

you. From personal (traumatic) experience, you probably already know that backups are a
good thing. What you might not know is that a number of Linux tools exist to facilitate the
process of backing up source code. Starting with this problem set, you’ll want to use a utility
called RCS (Revision Control System) to make regular, incremental backups of your source
code. Not only will RCS enable you to restore your most recently backed-up copy of a file in
the event of trauma, it will also enable you to restore different versions of your source code, in
the event you realize that the code you wrote a few days ago was much better than what
you’ve been producing since.

 Go ahead and “check in” (i.e., backup) your initial version of find.c by executing the

command below.

 ci find.c

 You’ll be prompted for a description for this file. Go ahead and describe the purpose of this

file in a few words, then enter . or hit ctrl-d on a line of its own to save the description. You
should be informed that version 1.1 of this file, your “initial revision,” has been checked in. If
you list the contents of your current working directory, you’ll notice that you now have a
directory called RCS therein, inside of which is find.c,v, which is where RCS (i.e., ci) records
changes to your file.

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2007

– 9 of 12 –

 Henceforth, anytime you want to check in your latest version of find.c, simply execute the
same command as before, per the below.

 ci find.c

 No longer will you be prompted for a description but, rather, a “log message,” which is even

more important than the file’s initial description. Log messages are supposed to help you
remember what’s different between this version and your last (e.g., “I changed my while loop
to a do-while loop”). Entering that message might be tedious, but, trust us, you’re not going
to remember what was special about version 1.9 at 3:00 A.M. without a little help. As before,
enter . or hit ctrl-d on a line of its own to save your message. Each time you check in a newer
version of your file, RCS will assign an appropriate version number.

 Suppose, for future reference, that you want to restore, say, version 1.1 of find.c. If you

don’t want to clobber (i.e., overwrite) your current version, be sure to check it in first! Then
proceed to execute the command below.

 co –r1.1 find.c

 You should find that version 1.1 of find.c has been restored to your current working

directory. So that you know which version of find.c is which, execute the command below
to see your own log messages.

 rlog find.c

 To save time, know that you can check in multiple files at once, as with the command below.

 ci *.c *.h

 For disk space’s sake, RCS will allow you to check in source files on nice.fas.harvard.edu

but not binaries.

7. (9 points.) And now the fun begins! Notice that find.c calls sort, a function declared in

helpers.h. Unfortunately, we forgot to implement that function fully in helpers.c! Take a
peek at helpers.c with Nano, and you’ll see that sort returns immediately, even though
find’s main function does pass it an actual array. Notice, incidentally, the syntax for passing
an array. To be sure, we could have put the contents of helpers.h and helpers.c in
find.c itself. But it’s sometimes better to organize programs into multiple files, especially
when some functions (e.g., sort) are essentially utility functions that might later prove useful
to other programs as well.

 Go ahead and implement sort using any algorithm that’s in O(n

2) so that the function actually
sorts, from smallest to largest, any array of integers that it’s passed.2 You may not alter the
function’s declaration. In particular, its return type must remain void. Rather than return a

2 You’re welcome to turn to Chapter 23 of Absolutely Beginner’s Guide to C for guidance, but we suggest that you instead
allow yourself only Week 3’s pseudocode.

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2007

– 10 of 12 –

new, sorted array, then, the function must instead “destructively” sort the actual array that it’s
passed.

 Don’t forget to check in helpers.c before making your changes! (Remember how?)

 We leave it to you to determine how to test your implementation of sort. But don’t forget

that printf and, now, gdb are your friends. And don’t forget that you can generate the same
sequence of pseudorandom numbers again and again by explicitly specifying generate’s seed.
Before you ultimately submit, though, be sure to remove any such calls to printf, as we like
our programs’ outputs just they way they are!

8. (9 points.) Now that sort (presumably) works, you can improve upon search. Notice that

our version implements linear search. Rip out those lines that we’ve written and re-implement
search as binary search!

9. (2 points.) Despite your enhancements to sort and search, you may find that your version

of find, once built with your changes, is now slower than ours. But why? Explain in a
sentence or more in ps3/questions.txt why your “new and improved” code is slower than
ours. In another sentence or more, explain why one might ever want to bother sorting then
searching with binary search.

The Game Begins.

10. And now it’s time to play. The Game of Fifteen is a puzzle played on a square, two-

dimensional board with numbered tiles that slide. Though, if you don’t know already this,
know that we’ve missed you at the past few lectures. The goal of this puzzle is to arrange the
board’s tiles from smallest to largest, left to right, top to bottom, with an empty space in
board’s bottom-right corner, as in the below.3

 Sliding any tile that borders the board’s empty space into that constitutes a “move.” Although

the configuration above depicts a game already won, notice how the tile numbered 12 or the
tile numbered 15 could be slid into the empty space. Tiles may not be moved diagonally,
though, or forcibly removed from the board.

3 Figure from http://en.wikipedia.org/wiki/Fifteen_puzzle.

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2007

– 11 of 12 –

 Although other configurations are possible, we shall assume that this game begins with the
board’s tiles in reverse order, from largest to smallest, left to right, top to bottom, with an
empty space in the board’s bottom-right corner. If, however, and only if the board contains
an odd number of tiles (i.e., the height and width of the board are even), the positions of tiles
numbered 1 and 2 must be swapped, as in the below.4

 The puzzle is solvable from this configuration.

11. (5 points.) Navigate your way to ~/cs50/ps3/fifteen/, and take a look at fifteen.c with

Nano. Within this file is the entire framework for The Game of Fifteen (and variants thereof).
The challenge ultimately at hand is to complete this game’s implementation.

 But first check in fifteen.c! (Remember how?) Then go ahead and compile the framework.

(Can you determine how?) And, even though it’s not yet finished, go ahead and run the game.
(Can you determine how?)

 Phew. It appears that the game is at least partly functional. Granted, it’s not much of a game

yet. But that’s where you come in.

 Read over the code and comments in fifteen.c and then answer the questions below in

ps3/questions.txt.

i. Besides 4 × 4 (which are The Game of Fifteen’s dimensions), what other dimensions
does the framework allow?

ii. With what sort of data structure is the game’s board represented?
iii. What function is called to greet the player at game’s start?
iv. What functions do you apparently need to implement?
v. Have you actually played and won The Game of Fifteen in real life?

12. (15 points.) Alright, get to it, implement this game. Remember, take “baby steps.” Don’t try

to bite off the entire game at once. Instead, implement one function at a time and be sure that
it works before forging ahead. In particular, we suggest that you implement the framework’s
functions in this order: init, draw, move, won. Any design decisions not explicitly prescribed

4 Figure adapted from http://en.wikipedia.org/wiki/Fifteen_puzzle.

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2007

– 12 of 12 –

herein (e.g., how much space you should leave between numbers when printing the board) are
intentionally left to you. Presumably the board, when printed, should look something like the
below, but we leave it to you to implement your own vision.

15 14 13 12

11 10 9 8

 7 6 5 4

 3 1 2

 To test your implementation, you can certainly try playing it. (Know that you can quit your

program by hitting ctrl-c.) Be sure that you (and we) cannot crash your program, as by
providing bogus tile numbers. And know that, much like you automated input into find, so
can you automate execution of this game. In fact, in ~cs50/pub/ps/tests/ps3/ are
3x3.txt and 4x4.txt, winning sequences of moves for a 3 × 3 board and a 4 × 4 board,
respectively. To test your program with, say, the first of those inputs, execute the below.

 fifteen 3 < ~cs50/pub/ps/tests/ps3/3x3.txt

 Feel free to tweak the appropriate argument to usleep to speed up the animation. In fact,

you’re welcome to alter the aesthetics of the game. For (optional) fun with “ANSI escape
sequences,” including color, take a look at our implementation of clear and check out the
URL below for more tricks.

 http://isthe.com/chongo/tech/comp/ansi_escapes.html

 But we ask that you not alter the flow of logic in main so that we can reliably automate testing

of your program once submitted. If in doubt as to whether some design decision of yours
might run counter to the staff’s wishes, simply contact your teaching fellow.

Submitting Your Work.

13. Ensure that your work is in ~/cs50/ps3/. Submit your work by executing the command

below.

 cs50submit ps3

 Thereafter, follow any on-screen instructions until you receive visual confirmation of your

work’s successful submission. You will also receive a “receipt” via email to your FAS account,
which you should retain until term’s end. You may re-submit as many times as you’d like; each
resubmission will overwrite any previous submission. But take care not to re-submit after the
problem set’s deadline, as only your latest submission’s timestamp is retained.

