

NOTICE TO PODCAST SUBSCRIBERS

The source code for CS 50’s library as well as for Fall 2007’s problem sets in general
can be found at http://cs50.tv/.

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2007

– 1 of 9 –

Problem Set 5: Mispellings1
out of 98 points

due, in part, by 7:00 P.M. on Tuesday, 13 November 2007, per #9

due, in full, by 7:00 P.M. on Friday, 16 November 2007

Goals.

The goals of this problem set are to:

• Allow you to design and implement your own data structure(s).
• Optimize your code’s (real-world) running time.
• Challenge THE BIG BOARD.

Recommended Reading.

Per the syllabus, no books are required for this course. If you feel that you would benefit from
some supplementary reading, though, below are some recommendations.

• Section 18 – 20, 27 – 30, 33, 36, and 37 of http://www.howstuffworks.com/c.htm.
• Chapter 26 of Absolute Beginner’s Guide to C.
• Chapter 17 of Programming in C.

1 Yes, we know. It’s meant to be ironic. Or something.

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2007

– 2 of 9 –

Academic Honesty.

All work that you do toward fulfillment of this course’s expectations must be your own unless
collaboration is explicitly allowed (e.g., by some problem set or the final project). Viewing or
copying another individual’s work (even if left by a printer, stored in an executable directory, or
accidentally shared in the course’s virtual terminal room) or lifting material from a book, magazine,
website, or other source—even in part—and presenting it as your own constitutes academic
dishonesty, as does showing or giving your work, even in part, to another student.

Similarly is dual submission academic dishonesty: you may not submit the same or similar work to
this class that you have submitted or will submit to another. Moreover, submission of any work that
you intend to use outside of the course (e.g., for a job) must be approved by the staff.

All forms of cheating will be dealt with harshly.

You are welcome to discuss the course’s material with others in order to better understand it. You
may even discuss problem sets with classmates, but you may not share code. In other words, you
may communicate with classmates in English, but you may not communicate in, say, C. If in doubt
as to the appropriateness of some discussion, contact the staff.

Grading Metrics.

Each question is worth the number of points specified parenthetically in line with it.

Your responses to questions requiring exposition will be graded on the basis of their clarity and
correctness. Your responses to questions requiring code will be graded along the following axes.

 Correctness. To what extent does your code adhere to the problem’s specifications?
 Design. To what extent is your code written clearly, efficiently, elegantly, and/or logically?
 Style. To what extent is your code commented and indented, your variables aptly named, etc.?

Rest assured that grades will be normalized across sections at term’s end.

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2007

– 3 of 9 –

Getting Started.

0. SSH to nice.fas.harvard.edu and recursively copy ~cs50/pub/ps/distributions/ps5

into your own ~/cs50 directory. (Remember how?)

 Navigate your way to ~/cs50/ps5/. If you list the contents of your current working

directory, you should see the below. If you don’t, don’t hesitate to ask the staff for assistance.

design.txt dictionary.h questions.txt speller.c
dictionary.c Makefile reflections.txt texts/

1. (12 points.) Surf on over to the URL below.

 http://www.fas.harvard.edu/~cs50/surveys/ps5/

 Please take some time to provide candid answers to the survey’s questions. Although you will

be prompted to authenticate with your HUID and PIN, your answers, immediately upon
submission, will be anonymized. We will know that you took the survey, but we will not know
which answers are yours.

Alot of Mispellings.

2. Theoretically, on input of size n, an algorithm with a running time of n is asymptotically

equivalent, in terms of O, to an algorithm with a running time of 2n. In the real world, though,
the fact of the matter is that the latter feels twice as slow as the former.

 The challenge ahead of you is to implement the fastest spell-checker you can! By “fastest,”

though, we’re talking actual, real-world, real noticeable seconds—none of that asymptotic stuff
this time.

 In speller.c, we’ve put together a program that’s designed to spell-check a file after loading

a 143,090-word dictionary from disk into memory. Unfortunately, we didn’t quite get around
to implementing the loading part. Or the checking part. Both we leave to you!

 Before we walk you through speller.c, go ahead and open up dictionary.h with Nano.

Declared in that file are three functions; take note of what each should do. Now open up
dictionary.c. Notice that we’ve implemented those three functions, but only barely, just
enough for this code to compile. Your job for this problem set is to re-implement those
functions as cleverly as possible so that this spell-checker works as advertised. And fast!

 Let’s get you started.

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2007

– 4 of 9 –

3. Open up speller.c with Nano and spend some time looking over the code and comments
therein. You won’t need to change anything in this file, but you should understand it
nonetheless. Notice how, by way of getrusage, we’ll be “benchmarking” (i.e., timing the
execution of) your implementations of check, load, and size. Also notice how we go about
passing check, word by word, the contents of some file to be spell-checked. Ultimately, we
report each misspelling in that file along with a bunch of statistics.

 Notice, incidentally, that we have defined the usage of speller to be

 speller [dict] file

 where dict is assumed to be a file containing a list of lowercase words, one per line, and file

is a file to be spell-checked. As the brackets suggest, provision of dict is optional; if this
argument is omitted, speller will use /home/c/s/cs50/pub/share/dict/words by default
for its dictionary. Within that file are those 143,090 words that you must ultimately load. In
fact, take a peek at that file with Nano (or more or less) to get a sense of its structure and
size. Notice that every word in that file indeed appears in lowercase (even, for simplicity,
proper nouns and acronyms), one per line. During development, you may find it helpful to
provide speller with a dict of your own that contains far fewer words, lest you struggle to
debug an otherwise enormous structure in memory.

 Don’t move on until you’re sure you understand how speller itself works!

4. Odds are, you didn’t spend enough time looking over speller.c. Go back one square and

walk yourself through it again!

5. (8 points.) Okay, technically that last problem induced an infinite loop. But we’ll assume you

broke out of it. In questions.txt, answer each of the following questions.

i. According to its man page, what does getrusage do?
ii. How many members are in a variable of type struct rusage?
iii. Why do you think we pass before and after by reference to calculate, even though

we’re not changing their contents?
iv. Explain as precisely as possible, in a paragraph or more, how main goes about reading

words from a file. In other words, convince us that you indeed understand how that
function’s for loop works.

v. Why do you think we used fgetc to read each word’s characters one at a time rather
than use fscanf with a format string like "%s" to read whole words at a time? Put
another way, what problems might arise by relying on fscanf alone?

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2007

– 5 of 9 –

6. Now take a look at Makefile. Notice that we’ve employed some new tricks. Rather than
hard-code specifics in targets, we’ve instead defined variables (not in the C sense but in a
Makefile sense).

 The line below defines a variable called CC that specifies that make should use GCC for

compiling.

 CC = gcc

 The line below defines a variable called CFLAGS that specifies, in turn, that GCC should use

some familiar flags.

 CFLAGS = -ggdb -std=c99 –Wall

 The line below defines a variable called EXE, the value of which will be our program’s name.

 EXE = speller

 The line below defines a variable called SRCS, the value of which is a space-separated list of C

files that will collectively implement speller.

 SRCS = speller.c dictionary.c

 The line below defines a variable called OBJS, the value of which is identical to that of SRCS,

except that each file’s extension is not .c but .o.

 OBJS = $(SRCS:.c=.o)

 The lines below define, by way of these variables, a default target, the output of which will be

speller.

 $(EXE): $(OBJS)
 $(CC) $(CFLAGS) -o $@ $(OBJS)

 Finally, the lines below define a target for cleaning up this problem set’s directory.

 clean:
 rm -f core $(EXE) *.o

 Know that you’re welcome to modify this Makefile as you see fit. In fact, you’ll need to if

you create any .c or .h files of your own.

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2007

– 6 of 9 –

7. On to the most fun of these files! Notice that in ps5/texts/, we have provided you with a
number of texts with which you’ll be able to test your speller. Among those files are the
script from Austin Powers: International Man of Mystery (yeah, baby, yeah!), a sound bite from
Ralph Wiggum, three million bytes from Tolstoy, some excerpts from Machiavelli and
Shakespeare, and the entirety of the King James V Bible. So that you know what to expect,
take a peek at those files using cat, less, or more. You can also use Nano, but be sure not to
save any changes accidentally.

 Now, as you should know from having read over speller.c carefully, the output of

speller, if run on, say, austinpowers.txt, should resemble the below. For amusement’s
sake, we’ve excerpted some of our favorite “misspellings.” And lest we spoil the fun, we’ve
omitted our own statistics for now.

MISSPELLED WORDS

[...]
Bigglesworth
[...]
Fembots
[...]
Virtucon
[...]
friggin'
[...]
shagged
[...]
trippy
[...]

WORDS MISSPELLED:
WORDS IN DICTIONARY:
WORDS IN FILE:
STARTUP TIME:
LOOKUP TIME:
SIZING TIME:
TOTAL TIME:

 STARTUP TIME represents the number of seconds that speller spends executing your

implementation of load. LOOKUP TIME represents the number of seconds that speller
spends, in total, executing your implementation of check. SIZING TIME represents the
number of seconds that speller spends executing your implementation of size. TOTAL
TIME is the sum of those three measurements.

 Incidentally, to be clear, by “misspelled” we mean that some word is not in the dict provided.

“Fembots” might very well be in some other dictionary.

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2007

– 7 of 9 –

8. Alright, the challenge ahead of you is to implement load, check, and size as efficiently as
possible, in such a way that STARTUP TIME, LOOKUP TIME, and SIZING TIME are all
minimized. To be sure, it’s not obvious what it even means to be minimized, inasmuch as
these benchmarks will certainly vary as you feed speller different values for dict and for
file. But therein lies the challenge, if not the fun, of this problem set. This problem set is
your chance to design. Although we invite you to minimize space, your ultimate enemy is
time. But before you dive in, some specifications from us.

i. You may not alter speller.c.
ii. You may not alter the declaration of load, check, or size in dictionary.{c,h}.
iii. You must alter the implementations of load, check, and size in dictionary.c.
iv. You may alter dictionary.h and Makefile.
v. You may implement functions other than load, check, and size (in

dictionary.{c,h} or new files) in order to facilitate your implementation of the same.
vi. Your implementation of check must be case-insensitive. In other words, if foo is in

dict, then check should return TRUE given any capitalization thereof; none of foo, foO,
fOo, fOO, fOO, Foo, FoO, FOo, and FOO should be considered misspelled.

vii. Capitalization aside, your implementation of check should only return TRUE for words
actually in dict. Beware hard-coding common words (e.g., the), lest we pass your
implementation a dict without those same words. Moreover, the only possessives
allowed are those actually in dict. In other words, even if foo is in dict, check should
return FALSE given foo's if foo's is not also in dict.

viii. You may assume that check will only be passed strings with alphabetical characters
and/or apostrophes.

ix. You may assume that dict will only contain lowercase alphabetical characters,
apostrophes, and/or newlines and that no word in dict will be longer than LENGTH
(a constant defined in speller.c).

9. (12 points.) With this problem set’s design so important, allow us to help you help yourself by

asking that you write your first “design document” for this course. In ps5/design.txt,
answer each of the questions below.

i. Describe in detail in English the data structure(s) with which you plan to implement this

spell-checker. Also define the data structure(s) in C (as with struct).
ii. Tell us, in pseudocode, step by step, how you intend to implement load.
iii. Tell us, in pseudocode, step by step, how you intend to implement check.
iv. Tell us, in pseudocode, step by step, how you intend to implement size.

 Email design.txt as an attachment to your teaching fellow by 7:00 P.M. on Tuesday,
13 November 2007.2 You need not wait for a reply before you proceed with implementation.
Consider this requirement an opportunity for counsel. Include any questions you have in the
body of your email. It’s absolutely fine if you alter your design as you proceed with
implementation. In fact, it is quite likely you will.

2 If you plan to spend n late days on this problem set, you must email your design document to your teaching fellow no
more than 24n hours after this deadline in order to receive credit.

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2007

– 8 of 9 –

10. (30 points.) Implement load!

 Allow us to suggest that you whip up some dictionaries smaller than the 143,090-word default

with which to test your code during development.

11. (30 points.) Implement check!

 Allow us to suggest that you whip up some small files to spell-check before trying out, oh, War

and Peace.

12. (3 points.) Implement size!

 If you planned ahead, this one is easy!

13. How to assess just how fast (and correct) your code is? Well, feel free to play with the staff’s

solution in ~cs50/pub/ps/solutions/ps5/. But also feel free to put your code to the test
against your own classmates’! Execute the command below to challenge THE BIG BOARD.

 bigboard

 We’ll benchmark your spell-checker with a variety of inputs. Assuming your output’s correct,

you can then surf on over to the course’s home page to see how your speller stacks up
against others’! Feel free to challenge THE BIG BOARD as often as you’d like; it will display
your most recent results.3

We shall honor those atop THE BIG BOARD.

 Realize that, for convenience, THE BIG BOARD includes links to lists of words considered

misspellings (with respect to our specifications and that 143,090-word dictionary) for each of
the texts in ps5/texts/.

 By the way, you might want to turn off GCC’s -ggdb flag when challenging THE BIG

BOARD. And you might want to read up on GCC’s -O flags! (Remember how?)

 Those more comfortable might also find such tools as gprof and gcov of interest.

14. (3 points.) And now let’s have you reflect in ps5/reflections.txt. Describe in detail the

data structure(s) with which you actually implemented this spell-checker. In what way(s) did
your actual implementation ultimately differ from the design you put forth in design.txt?
Why did you diverge from your original design?

3 Realize, incidentally, that your spell-checker’s performance might very well vary based on what others are doing on
nice.fas.harvard.edu at the moment you challenge. That reality, however, is part of the challenge! If you’re
determined to fight load or find better hardware, you’re welcome to SSH to specific machines within the
nice.fas.harvard.edu cluster.

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2007

– 9 of 9 –

Submitting Your Work.

15. Ensure that your work is in ~/cs50/ps5/. Submit your work by executing the command

below.

 cs50submit ps5

 Thereafter, follow any on-screen instructions until you receive visual confirmation of your

work’s successful submission. You will also receive a “receipt” via email to your FAS account,
which you should retain until term’s end. You may re-submit as many times as you’d like; each
resubmission will overwrite any previous submission. But take care not to re-submit after the
problem set’s deadline, as only your latest submission’s timestamp is retained.

 Per #1, don’t forget to complete the survey at the URL below!

 http://www.fas.harvard.edu/~cs50/surveys/ps5/

