
Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2007

– 1 of 5 –

Quiz 1
Solutions

Answers other than the below may be possible.

Multiple Choice.

0. a, b, c, or d
1. d
2. c
3. b

Let’s see how good your memory is.

4.

 *y *b

heap

swap

 a b tmp

main

 z *z x y *a

stack

O(mega).

5. Even if its input is already sorted, this implementation iterates over n elements n times, for a

total of n × n = n 2 steps. If we instead check, at the end of each iteration of the outer loop,
whether or not we actually swapped any neighbors, breaking out of that loop if not, we can
keep our running time in Ω(n).

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2007

– 2 of 5 –

Should have memoized this!

6. 3

7. 9

This function is so foobar!

8. Factorial.

 For sufficiently large non-negative n, the function suffers from overflow, as n ! exceeds

INT_MAX.

 For sufficiently large non-negative n, foobar is recursively called so many times that the calls’

frames overrun the available stack space.

 int
 foobar(int n)
 {
 int answer = 1;
 for (int i = n; i > 1; i--)
 answer *= i;
 return answer;
 }

Fun with Tables.

9.

 O Ω assumptions, if any

Binary Search log n 1 input is a sorted array

Linear Search n 1

Merge Sort n log n n log n

Selection Sort n 2 n 2

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2007

– 3 of 5 –

10.
base-2 base-10 base-16

1010 10 A

10 2 2

10000 16 10

10000000 128 80

111100000000 3840 F00

11111111 255 FF

11.

 sizeof

char 1

char * 4

int 4

int * 4

long long 8

long long * 4

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2007

– 4 of 5 –

Rapid Fire.

12. Sometimes recursion lends itself to more literal translation (and thus easier implementation) of

algorithms into code (e.g., divide-and-conquer strategies).

13. The algorithm is in both Ω(n) and O(n).

14. If foo is a member of some struct called bar to which baz is a pointer, the dot operator

allows you to access foo by way of bar.foo, whereas the -> operator allows you to access the
same by way of baz->foo.

15. As the number of cores in our computers increases but the number of things we, as humans,

can do simultaneously remains roughly constant, we need software to take greater advantage
of parallelism if we are to benefit, in terms of our computers’ performance, from so many
more cores.

16. “Deleting” a file often means “forgetting” where its bits are (by modifying the file’s directory

entry) but not actually overwriting them. By searching a hard drive for modified directory
entries or known signatures, files can often be recovered.

17. A memory leak is the result of some program requesting memory of the operating system (as

via malloc) and never freeing it (as via free), even when no longer needed.

Makin’ Copies.

18. Because s2 equals s1, it, as a pointer to a char, merely points to the same char in memory as

does s1. Accordingly, s1[0] and s2[0] represent the same char in memory. Capitalizing
one thus capitalizes the other.

19.
 string

CopyString(string s)
{
 if (s == NULL)
 return NULL;
 string t = (string) malloc((strlen(s) + 1) * sizeof(char));
 if (t == NULL)
 return NULL;
 for (int i = 0, n = strlen(s); i <= n; i++)
 t[i] = s[i];
 return t;
}

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2007

– 5 of 5 –

LAST ONE!

20.
 #include <ctype.h>
 #include <stdio.h>
 #include <stdlib.h>
 #include <string.h>

 int
 main(int argc, char * argv[])
 {
 // try to open input
 FILE * fin = fopen(argv[1], "r");
 if (fin == NULL)
 return 1;

 // prepare output's name
 for (int i = 0, n = strlen(argv[1]); i < n; i++)
 argv[1][i] = toupper(argv[1][i]);

 // try to open output
 FILE * fout = fopen(argv[1], "w");
 if (fout == NULL)
 {
 fclose(fin);
 return 1;
 }

 // convert input's contents to uppercase
 char c;
 while (!feof(fin))
 {
 fread(&c, sizeof(char), 1, fin);
 c = toupper(c);
 fwrite(&c, sizeof(char), 1, fout);
 }

 // that's all folks
 fclose(fout);
 fclose(fin);
 }

