
Computer Science 50
Fall 2008
Scribe Notes

Week 1 Wednesday: September 24, 2008
Andrew Sellergren, Anjuli Kannan

Contents

1 Announcements (0:00–3:00) 2

2 Demographics (4:00–5:00) 2

3 Academic Honesty (5:00–8:00) 2

4 Stupid Internet Forward of the Day (8:00–11:00) 2

5 How To Write a Program in C (11:00–15:00) 3

6 Variables in C (15:00–28:00) 4

7 Conditions (28:00–36:00) 7

8 More Boolean Expressions (36:00–40:00) 8

9 Switch Statements (40:00–45:00) 9

10 Loops (45:00–1:11:00) 11

1

Computer Science 50
Fall 2008
Scribe Notes

Week 1 Wednesday: September 24, 2008
Andrew Sellergren, Anjuli Kannan

1 Announcements (0:00–3:00)

• David gets made fun of for going to Harvard, as will the rest of you once
you graduate.

• 0 new handouts today.

• Don’t forget to section!1

• Sections will be announced by Saturday and will be starting on Sunday.

• It’s not too late to get a Scratch Board for the Hacker Edition of Problem
Set 0. Don’t worry, getting a Scratch Board doesn’t imply a commitment
to turn in the Hacker Edition!

• “Lunch with David” on Fridays: e-mail rsvp@cs50.net if you’d like to
join.

• Problem Set 1 will be released on Friday at 7 p.m. If you turn it in by
7:15 p.m. the same day, you will be exempt from all future problem sets
and will be permitted to take over David’s job as professor of the course.2

2 Demographics (4:00–5:00)

• The course is composed mostly of sophomores. Yikes.

• Leverett has the highest enrollment. Lowell has the lowest enrollment.3

• Female enrollment has increased by 60% from last fall. Lucky you, boys.

3 Academic Honesty (5:00–8:00)

• Don’t cheat!

• There’s a clear line between chatting and cheating.

• 15 students were sent to the Ad Board last year. They were caught by
easy-to-recognize patterns in their work.

• You have 9 late days! The lowest problem set grade is dropped! These
are perfect alternatives!

4 Stupid Internet Forward of the Day (8:00–11:00)

• iPhone development is one of the possibilities for the Final Project.

• As it turns out, the iPhone will blend.
1Actually, by the time you read this, it’s too late.
2This is not true.
3Mather is not the best. Winthrop is.

2

Computer Science 50
Fall 2008
Scribe Notes

Week 1 Wednesday: September 24, 2008
Andrew Sellergren, Anjuli Kannan

5 How To Write a Program in C (11:00–15:00)

• From last time, the simplest program possible:

1. Pull up a terminal window and login using ssh protocol.

2. Use the command cd to navigate to a folder where you can open a
text file in nano or your favorite text editor.

3. Type the following lines:

int
main(int argc, char *argv[])
{

}

For right now, don’t worry about what this is doing, just know that
it’s necessary.

4. If you want to print to stdout, use the function printf like so:

int
main(int argc, char *argv[])
{

printf("O hai, class!\n");
}

5. However, printf is not a function that we ourselves have written, so
we must #include its library at the top of our file:

#include <stdio.h>

Quotation marks are for local libraries, angle brackets are for non-
local libraries.

6. Now, let’s compile. At the command prompt, type the following:

gcc hello.c -o hello

The -o flag controls the name of the output file.

7. That’s it! Try running the program by typing hello at the command
line.

• Let’s try adding a syntax error. If you take out the semicolon after the
printf function call, GCC will yell at you and tell you that it “expected”
a semicolon on a certain line. This is the good kind of error because it’s
very specific.

• Oops! If you try to open the file hello in nano, you’ll get a bunch of
junk. This is because hello is written in object code, or binary, which
nano doesn’t recognize.

3

Computer Science 50
Fall 2008
Scribe Notes

Week 1 Wednesday: September 24, 2008
Andrew Sellergren, Anjuli Kannan

6 Variables in C (15:00–28:00)

• Unlike in Scratch, in C you have to declare your variables, i.e. state their
types.

• Write a program in C to convert a temperature from Fahrenheit to Celsius!
The formula is ◦C = (5/9)× (◦F − 32).

1. Begin your code as before:

int
main(int argc, char *argv[])
{

}

2. Write a prompt for your user:

int
main(int argc, char *argv[])
{

printf("Give me a temp in F: ");
int f = GetInt();

}

The = sign is sometimes read as “gets” because it is assigns a value to
the lefthand side. Notice that we’re using CS 50’s function GetInt(),
so we’re going to have to make sure to #include the CS 50 library
at the top of our file. The == sign is read as “equals.”

3. But we want to be a little more versatile and account for decimals,
so let’s use a float instead of an int:

int
main(int argc, char *argv[])
{

printf("Give me a temp in F: ");
float f = GetFloat();

}

4. Now we’ll implement the actual formula. Note that we kept the
parentheses just to be sure that order of operations was preserved.
Also, notice that f is lowercase:

int
main(int argc, char *argv[])
{

printf("Give me a temp in F: ");
float f = GetFloat();

float c = (5/9) * (f - 32);
}

4

Computer Science 50
Fall 2008
Scribe Notes

Week 1 Wednesday: September 24, 2008
Andrew Sellergren, Anjuli Kannan

5. Finally, we want to print the converted value to stdout:

int
main(int argc, char *argv[])
{

printf("Give me a temp in F: ");
float f = GetFloat();

float c = (5/9) * (f - 32);

printf("That’s %f in C!\n", c);
}

Notice that the printf function now takes two arguments. The %f is
a placeholder for a float which we specify after the comma, namely
c. The other placeholders are as follows:

%c char
%d integer
%e scientific notation
%E scientific notation
%f double or float
%s string
%u unsigned int
%x hex

6. Well, it compiles when we run make program from the command line,
but when we actually execute program and give 212 in Fahrenheit as
input (the boiling point of water, which should output 100 in Celsius),
we get 0.0000 as output. What’s going on? We have a subtle bug in
our formula:

int
main(int argc, char *argv[])
{

printf("Give me a temp in F: ");
float f = GetFloat();

float c = (5.0/9.0) * (f - 32);

printf("That’s %f in C!\n", c);
}

The (5/9) needs to be replaced with (5.0/9.0) in order that it
doesn’t get rounded down or truncated to 0. Dividing two int’s
will return another int. Thus, if the numbers don’t divide evenly,
information on the remainder will be lost.

5

Computer Science 50
Fall 2008
Scribe Notes

Week 1 Wednesday: September 24, 2008
Andrew Sellergren, Anjuli Kannan

7. What about “corner cases,” or invalid inputs? If we type in anything
but a valid number, GetFloat() will prompt us again. In this case,
we’ve done it for you, but in the future, you’ll need to consider how
you’re going to deal with corner cases.

8. The six decimal places are a little ugly. Let’s cut it down to 1:

int
main(int argc, char *argv[])
{

printf("Give me a temp in F: ");
float f = GetFloat();

float c = (5.0/9.0) * (f - 32);

printf("That’s %.1f in C!\n", c);
}

This is a format string that we’ve added. The printf function will
round, not truncate, to fulfill the format string. As you continue pro-
gramming, you’ll find that you have to make a compromise between
precision and size of numbers. If you want to be very precise, you
can’t represent very large numbers and vice versa.

9. For one final improvement, we’ll remind the user of their input:

int
main(int argc, char *argv[])
{

printf("Give me a temp in F: ");
float f = GetFloat();

float c = (5.0/9.0) * (f - 32);

printf("%.1f in F is %.1f in C!\n", f, c);
}

Now, the printf function takes three arguments, the last two be-
ing variables for which we’ve provided placeholders. Notice that the
variables are in the order of their placeholders!

6

Computer Science 50
Fall 2008
Scribe Notes

Week 1 Wednesday: September 24, 2008
Andrew Sellergren, Anjuli Kannan

7 Conditions (28:00–36:00)

• The if-else construct allows you to do something in one case, and do some-
thing else in all other cases:

if (condition)
{

/*do this*/
}
else
{

/*do that*/
}

• Let’s take a look at conditions1.c:

int
main(int argc, char * argv[])
{

int n;

/* ask user for an integer */
printf("I’d like an integer please: ");
n = GetInt();

/* analyze user’s input (somewhat inaccurately) */
if (n > 0)

printf("You picked a positive number!\n");
else

printf("You picked a negative number!\n");
}

• What’s the bug? Code doesn’t deal with case of 0

7

Computer Science 50
Fall 2008
Scribe Notes

Week 1 Wednesday: September 24, 2008
Andrew Sellergren, Anjuli Kannan

• Use the if-else if construct to do something in one case and do something
else in any number of other cases:

if (condition)
{

/*do this*/
}
else if (condition)
{

/*do that*/
}
else
{

/*do this other thing*/
}

• Replace the if-else in conditions1.c with the following:

if (n > 0)
printf("You picked a positive number!\n");

else if (n == 0)
printf("You picked zero!\n");

else
printf("You picked a negative number!\n");

• Oops! Don’t forget to use == instead of = when you’re checking and not
assigning a variable’s value! If you’re lucky, GCC will yell at you for not
having double parentheses around an assignment within a condition.

• Notice we can exclude the squiggly braces if the contents of the if or else
is only one line. This is simply a matter of style. Placement of brackets,
spacing, and indentation are all aspects of style. Every student has her
own style, but just make sure your code is consistent and readable.

8 More Boolean Expressions (36:00–40:00)

• if (condition1 || condition2) means if condition1 is true or condition2
is true

• if(condition1 && condition2) means if condition1 is true and condition2
is true

• nonswitch.c:

int
main(int argc, char * argv[])
{

8

Computer Science 50
Fall 2008
Scribe Notes

Week 1 Wednesday: September 24, 2008
Andrew Sellergren, Anjuli Kannan

int n;

/* ask user for an integer */
printf("Give me an integer between 1 and 10: ");
n = GetInt();

/* judge user’s input */
if (n >= 1 && n <= 3)

printf("You picked a small number.\n");
else if (n >= 4 && n <= 6)

printf("You picked a medium number.\n");
else if (n >= 7 && n <= 10)

printf("You picked a big number.\n");
else

printf("You picked an invalid number.\n");
}

Notice the <= and >= syntax meaning “less than or equal to” and “greater
than or equal to,” respectively.

9 Switch Statements (40:00–45:00)

• Use switch statements if you have an int or char that you want to check
the value of and do different things depending on its value.

• You could do a whole bunch of if-else if statements, but switch statements
may be more readable and understandable.

• Switch statements are preferred in certain scenarios, for example a game
in which different actions are taken based on user input. Shuttleboy, for
one, has a large switch statement.

• switch1.c:

int
main(int argc, char * argv[])
{

int n;

/* ask user for an integer */
printf("Give me an integer between 1 and 10: ");
n = GetInt();

/* judge user’s input */
switch (n)
{

case 1:

9

Computer Science 50
Fall 2008
Scribe Notes

Week 1 Wednesday: September 24, 2008
Andrew Sellergren, Anjuli Kannan

case 2:
case 3:

printf("You picked a small number.\n");
break;

case 4:
case 5:
case 6:

printf("You picked a medium number.\n");
break;

case 7:
case 8:
case 9:
case 10:

printf("You picked a big number.\n");
break;

default:
printf("You picked an invalid number.\n");

}
}

• When a true condition is encountered, all the code that follows is is exe-
cuted until a break is reached. This means that the program “falls” into
other cases unless you explicitly tell it not to.

• If no condition is true, the default case will be carried out. It is not
necessary to have a default case, however.

• You can also do a switch with char’s (because they are just numbers), but
not strings. You must use single quotes around char’s, as in switch2.c
below:

int
main(int argc, char * argv[])
{

char c;

/* ask user for a char */
printf("Pick a letter grade: ");
c = GetChar();

/* judge user’s input */
switch (c)
{

case ’A’:

10

Computer Science 50
Fall 2008
Scribe Notes

Week 1 Wednesday: September 24, 2008
Andrew Sellergren, Anjuli Kannan

case ’a’:
printf("You picked an excellent grade.\n");
break;

case ’B’:
case ’b’:

printf("You picked a good grade.\n");
break;

case ’C’:
case ’c’:

printf("You picked a fair grade.\n");
break;

case ’D’:
case ’d’:

printf("You picked a poor grade.\n");
break;

case ’E’:
case ’e’:

printf("You picked a failing grade.\n");
break;

default:
printf("You picked an invalid grade.\n");

}
}

10 Loops (45:00–1:11:00)

• A for loop is implemented like so:

for (initializations; condition; updates)
{

/*do this again and again*/
}

The initializations (such as a variable assignment) are carried out before
the first iteration of the loop, the condition is checked before each iteration
of the loop, and the updates are executed after each iteration of the loop.

• progress1.c:

for (i = 0; i <= 100; i++)
{

11

Computer Science 50
Fall 2008
Scribe Notes

Week 1 Wednesday: September 24, 2008
Andrew Sellergren, Anjuli Kannan

printf("Percent complete: %d%%\n", i);
sleep(1);

}

The function sleep is self-explanatory. It takes a number of seconds as
its only argument.

• Why %%? We are “escaping” the percent character so that it will actually
be displayed and not be interpreted as the first part of a placeholder such
as %d.

• If you try to compile progress1.c using the gcc command from the com-
mand line instead of CS 50’s make command, the compiler will yell at
you for having a variable declaration in the for loop. You need the flag
-std=c99, which tells the compiler that we’re using the 1999 version of C.
This flag is built into make.

• If you run progress1, you can see that we have implemented a primitive
kind of animation. Type Ctrl+Z to suspend the program and fg to resume
it.

• progress2.c:

for (int i = 0; i <= 100; i++)
{

printf("\rPercent complete: %d%%", i);
fflush(stdout);
sleep(1);
}
printf("\n");

}

• Now that we’ve done for loops, while loops are fairly straightforward:

while (condition)
{

/*do this again and again */
}

• progress3.c implements the same progress bar as progress2.c, but with
a while loop.

• The \r is called a carriage return. It resets the cursor all the way to the
left on the same line without starting a new line. In the world of Windows,
a newline is denoted by \r\n, whereas in Linux, a newline is denoted by
\n. Sometimes this will cause “garbage” characters such as ^M to appear
on screen when you’re moving between the two formats.

12

Computer Science 50
Fall 2008
Scribe Notes

Week 1 Wednesday: September 24, 2008
Andrew Sellergren, Anjuli Kannan

• The fflush() function is necessary because the printf function prints to
a buffer before printing to the screen. Calling fflush() forces the program
to spit out whatever is in the printf buffer. If it isn’t called, then the for
loop will constantly overwrite the contents of the printf buffer and only
print it to the screen once at the very end.

• When you open a program and start typing before it’s completely loaded,
your computer will log what you’re typing in a temporary buffer. Pro-
grams write to buffers rather than writing every single character one at a
time.

• What if we were counting down instead of up? There’s a bug such that
two percent characters appear on screen because the string 100% is longer
than 99%, 98%, etc. The second % character is a remnant from when 100%
was printed. To fix this, use the format string %3d%%, which specifies that
3 spaces be used for all of the percentages.

• Remember to include an update statement to avoid infinite loops!

• Finally, we have do-while loops. These are useful when we want to make
sure that a piece of code is executed at least once, even if the condition
evaluates to false:

do
{

/*do this again and again */
}
while(condition)

• positive1.c:

int n;

do
{

printf("I demand that you give me a positive integer: ");
n = GetInt();

}
while (n < 1);
printf("Thanks for the %d!\n", n);

This program will keep asking for a positive integer until the user finally
provides one.

• We’ve defined a data type called bool in the CS 50 library because it
is implemented in many other programming languages. It holds a value
either true or false. See positive2.c:

13

Computer Science 50
Fall 2008
Scribe Notes

Week 1 Wednesday: September 24, 2008
Andrew Sellergren, Anjuli Kannan

bool thankful = false;

// loop until user provides a positive integer
do
{

printf("I demand that you give me a positive integer: ");
if (GetInt() > 0)

thankful = true;
}
while (thankful == false);
printf("Thanks for the positive integer!\n");

By default, we are not thankful (thankful evaluates to false) because
the user hasn’t provided the input we’re looking for. As soon as he does,
we are thankful (thankful evaluates to true) and the while loop exits.

• What’s different between positive2.c and positive1.c? The user’s
input is no longer stored, so we couldn’t print it out later if we wanted. If
we change the condition to ((n = GetInt()) > 0), the input will again
be stored.

• We can do even more to condense the code. See positive3.c:

bool thankful = false;

// loop until user provides a positive integer
do
{

printf("I demand that you give me a positive integer: ");
if (GetInt() > 0)

thankful = true;
}
while (!thankful);
printf("Thanks for the positive integer!\n");
}

The ! operator means NOT, so the condition now reads “do {} while NOT
thankful.”

14

	Announcements (0:00--3:00)
	Demographics (4:00--5:00)
	Academic Honesty (5:00--8:00)
	Stupid Internet Forward of the Day (8:00--11:00)
	How To Write a Program in C (11:00--15:00)
	Variables in C (15:00--28:00)
	Conditions (28:00--36:00)
	More Boolean Expressions (36:00--40:00)
	Switch Statements (40:00--45:00)
	Loops (45:00--1:11:00)

