Computer Science 50 Week 2 Wednesday: October 1, 2008
Fall 2008 Andrew Sellergren, Anjuli Kannan

Scribe Notes

Contents

L Announcements (0:00—8:00)| 2
|2 Arrays and Pre-processor Directives (8:00—30:00)| 2
|3 The Problem with Arrays (30:00—38:00)| 4
|4 Strings as Arrays (38:00—56:00)| 5
[Back to Command-Line Arguments (56:00—62:00)] 7
|6 Cryptography (62:00—79:00)| 7

Computer Science 50 Week 2 Wednesday: October 1, 2008
Fall 2008 Andrew Sellergren, Anjuli Kannan
Scribe Notes

1 Announcements (0:00-8:00)

David is a kid at heart[T]
0 new handouts today.

Walkthroughs are online (and are very well produced thanks to Keito and
Chris). By default, they focus on the Standard Edition of the problem
sets.

The latest Office Hours are always posted online (over 100 per week!).

If you still have Scratch Boards, please return them with a slip of paper
noting your name, username, and ID number.

“Lunch with David” on Fridays: e-mail rsvp@cs50.net if you’d like to
join.

Problem Set 2 will be released on Friday at 7 p.m. If you turn it in by
7:15 p.m. the same day, you will be exempt from all future problem sets
and will be permitted to take over David’s job as professor of the courseE|

Former head TF Thomas Carreiro wishes to announce a Facebook tech
talk Pl

David calls the headset-style microphone the “Britney Spears mic.” FYT.

2 Arrays and Pre-processor Directives (8:00-30:00)

Let’s say we want to write a program to average the test scores of CS 50
students.

1. Pull up a terminal window.

2. demo.c:

#include <csb50.h>
#include <stdio.h>

int
main{int argc, char *argv[])
{

float quizi;

float quiz2;

printf("Quiz 1: ");

IHe has indicated to me that he watches A Christmas Story nightly.

2This is still not true.

3No, they won’t be answering questions about the new layout. Sorry, we just have to deal
with it.

Computer Science 50 Week 2 Wednesday: October 1, 2008
Fall 2008 Andrew Sellergren, Anjuli Kannan
Scribe Notes

quizl = GetFloat();

printf("Quiz 2: ");
quiz2 = GetFloat();

float ave = (quizl + quiz 2) / 2;

printf("Ave: %f\n", ave);
}

Don’t forget the #include’s and order of operations!

3. Oops, it didn’t compile with the command gcc demo.c. What went
wrong? We need to tell GCC where to find the CS 50 header file
¢s50.h. Use the flag -1cs50. We can also use the -o flag to spec-
ify the output file. However, be sure not to type something like
-0 demo.c. This will overwrite your source codef]]

4. What if we want 9 quizzes instead of 27 Should we simply copy and
paste?E]

5. Let’s use a loop! And an array! See arrayl.c:

// number of quizzes per term
#define QUIZZES 2

int

main(int argc, char *argv[])

{
float grades[QUIZZES], sum;
int average, 1i;

// ask user for grades
printf ("\nWhat were your quiz scores?\n\n");
for (i = 0; i < QUIZZES; i++)
{
printf ("Quiz #%d of %d: ", i+l, QUIZZES);
grades[i] = GetFloat();
}

// compute average
sum = 0;
for (i = 0; i < QUIZZES; i++)
sum += grades[i];
average = (int) (sum / QUIZZES + 0.5);

// report average

4pUCY?
5Rhetorical question. LDO.

Computer Science 50 Week 2 Wednesday: October 1, 2008
Fall 2008 Andrew Sellergren, Anjuli Kannan
Scribe Notes

printf ("\nYour average is: %d\n\n", average);

}

What’s the deal with the #define? It’s a way of dynamically defin-
ing variables at compile time. When you go to run GCC, the word
QUIZZES will be replaced with the number you specify (in this case 2)
everywhere that it occurs in your program. And the array grades[]17
If we check out howstuffworks.com we see a great visual representa-
tion of an array. For example, an array like int a[4] is represented
in memory as four contiguous chunks of memory, each of the same size
as a single int. This, however, is also dangerous: something called a
buffer overrun exploit takes advantage of this type of memory access.

6. Walk through the code above and make sure you know what’s going
on! Notice that we access the i*” element of an array by writing
grades[i] and that we write sum = sum + grades[i] in shorthand
as sum+ += grades[i]. In this spirit of conciseness, can you rewrite
the code so that there is only one loop instead of two?

7. What is going on with the line that begins average = (int)? By
adding 0.5 and casting the float to an int, we can round average
to the nearest whole number. What if we didn’t want to use this
trick? We can also use the function round from the math.h library.
Again, we’ll have to tell GCC that we’re going to use this library by
typing the flag -1m at the command line. Check it out in array?2.c!

e So our program scales to account for a greater number of quizzes, but
what’s the downside? We have to re-compile every time we want to change
the number of quizzes. We’ll tackle this problem next week when we look
at memory management and the heap. For now, let’s look at the potential
bugs and security holes that can arise from using arrays incorrectlyﬁ

3 The Problem with Arrays (30:00—38:00)

e Let’s take a look at buggy6.c:

#include <cs50.h>
#include <stdio.h>

// number of quizzes per term
#define QUIZZES 2

int
main(int argc, char *argv[])
{

float grades[QUIZZES];

6Man, David looks funny with the Britney Spears mic, doesn’t he?

Computer Science 50 Week 2 Wednesday: October 1, 2008
Fall 2008 Andrew Sellergren, Anjuli Kannan
Scribe Notes

int i;

// ask user for scores
printf ("\nWhat were your quiz scores?\n\n");
for (i = 0; i < QUIZZES; i++)
{
printf ("Quiz #J%d of %d: ", i+l, QUIZZES);
grades[i] = GetFloat();
}

// print scores
for (i = 0; i < 3; i++)
printf ("%.2f\n", grades[i]);

e What’s wrong with this program? Our second for loop has a magic
number: the terminating condition is i < 3, but it’s not clear what 3
means in the context of this program. Usually this is simply a matter of
poor style, but in this case, the number also disagrees with the QUIZZES.
Now, we’re printing out 3 quiz scores even though we’ve only prompted
the user for 2! What happens when we run it?

e The first few times we run the program, we get the value 0.00 printed out
as the third quiz score. What if we change the terminating condition to
i < 47 We get -1.52. Now we’re hackingﬂ

e How about 1007 10007 1000007 In the last case, we’re touching memory
about 1 megabyte away from what we “own.” When we do this, often
we’ll get a segmentation fault and a file called core will be generated to
help you debug.

4 Strings as Arrays (38:00-56:00)

e We can treat strings as arrays because they, too, are stored in contiguous
memory. A string is really just a series of chunks of memory, each of
the same size as a char. After the last character in the string, there’s a
NULL character (often represented as ’\0’) to denote the end. Let’s take
advantage of this in stringl.c:

#include <csb0.h>
#include <stdio.h>
#include <string.h>

int
main(int argc, char *argv[])

"You are officially a h4xxOr.

Computer Science 50 Week 2 Wednesday: October 1, 2008
Fall 2008 Andrew Sellergren, Anjuli Kannan
Scribe Notes

{
char c;
int i;
string s;
// get line of text
s = GetString();
// print string, one character per line
if (s !'= NULL)
{
for (i = 0; i < strlen(s); i++)
{
c = slil;
printf("%c\n", c);
}
}
}

Notice that we can loop through a string just as we would an array. Each
of the characters in the string is analogous to an element in an array.

e Why do we have to check s != NULL? Well, we can’t assume that our
users are goody two-shoes. They might feed us a NULL character by typing
Ctrl+D when prompted. This will break our programﬁ

e Take a look at string2.c. Can you figure out what the optimization is?
Whereas in stringl.c we were calling strlen{} at every iteration of the
loop, in string?2.c, we only call it once. This is perfectly acceptable since
the length of the string presumably won’t change between iterations of the
loops. This is an improvement in speed which we make at the expense of
space (a common theme in computer science). In this case, the amount of
space we use is negligible, so the optimization is a no-brainer.

e Let’s tie this idea together with the concept of casting. Take a look at
capitalize.c.

e This program only capitalizes legitimate letters. How do we achieve this?
For starters, the loop is taken from string2.c. What about the lines
below:

if (s[i] >= a && s[i] <= z)
printf("%c", sl[i] - (a - A));
else
printf ("%c", sl[il);

8This is a bad thing.

Computer Science 50 Week 2 Wednesday: October 1, 2008
Fall 2008 Andrew Sellergren, Anjuli Kannan
Scribe Notes

Type casting these char’s as int’s allows us to subtract them! We’re also
using an array to access each of the characters in the string. Be sure to
walk through all of the code in capitalize.c since it ties together a lot
of what we’ve been talking about for the last few weeks!

Where would you go to find all this out? Try typingman 3 <command_name>
or man <command_name> at the command line of your terminal window.
This will bring up the Linux manual page for the particular command
that you want to read more aboutﬂ

5 Back to Command-Line Arguments (56:00-62:00)

We've already seen how we can tell GCC that we’re going to use certain
libraries by invoking the -1cs50 and -1m flags. What else can we do from
the command line?

Finally, we’re going to start using that int main() stuff you’ve been typ-
ing at the top of every file you write in C!

Notice first that argv[] is actually an array (or, technically speaking, a
vector). Its type is actually a char *, which means it’s a pointer. We'll
talk more about this next week. For now, let’s look at argvl.c.

This program simply prints out the command-line arguments that we feed
it. How does it achieve this?

Notice that we iterate from 0 to argc in our for loop. What is it that
we’re printing during each iteration of the loop? Each element of the array
argv[] is actually one of the command-line arguments that we fed to the
program. Thus, argv[] is actually an array of strings, or more technically,
an array of arrays of characters.

Next, argv2.c takes it a step further and prints each character of every
command-line argument on separate lines. Take a look at how we do this,
namely by accessing argv[] as a two-dimensional array, i.e. argv[i] [j].

6 Cryptography (62:00-79:00)

Remember “Or fher gb gevax Ibhe binygvar!”?

Cryptography usually relies on a secret key known only to the sender and
receiver. In Ralphie’s case, this was the Captain Midnight decoder ring.
In the case of the Germans during WWII, this was the Enigma machine.

How do we crack the code? Well, we could do a frequency analysis and
try to map the most frequently occurring ciphertext character to the most

90MG! I can’t believe David said RTFM in lecture!

Computer Science 50 Week 2 Wednesday: October 1, 2008
Fall 2008 Andrew Sellergren, Anjuli Kannan
Scribe Notes

frequently occurring plaintext characters in the language (e.g. “e”). Or,
we could just steal the Enigma machine@

e One of the earliest examples of cryptography was the Caesar cipher. This
is very easy to implement, but also very easy to cracklEI Simply shift or
rotate all of the plaintext characters in your message by a single integer
value which will then become your secret key; if that value takes you past
the letter “z”, simply loop back and start counting from “a” again.

e Slightly more advanced is the Vigenere’s cipher. Here, we rotate all of the
plaintext characters in our message by numerous different integer values,
each of which is mapped by a character in a key word or phrase. For
example, if “foobar” is our key word, then the first letter of our plaintext
message will be rotated by “f” or 5, the second letter will be rotated by
“o” or 14, etc.

e How much better is the Vigenere’s cipher than the Caesar cipherﬂ When
we compare these ciphers, we talk about their keyspaces. Whereas the
keyspace of the Caesar cipher is 26, the keyspace of the Vigenere’s cipher is
26", where n is the number of letters in our key word. Comparatively, the
keyspace of DES, a modern method, is 72,000,000,000,000,000! Roughly
speaking, the keyspace is the worst-case number of possible keys that a
malicious user would need to consider in order to crack the code by brute
force.

e What’s the catch? If you've ever seen the padlock icon in the bottom of
your browser window, it means that it is encrypting information with the
web site you are accessing. Does this mean that you are both sharing a
single key? Fortunately, no. Now, there are two: a private key and a
public key. The math works out such that you can encrypt information to
a web site like Amazon using its public key (and vice versa, Amazon can
encrypt information using your public key) and the only number which
will reverse this process is the private key known only to you. All of this
security relies upon the fact that computers still have trouble factoring
very large prime numbers, even by brute force.

e For next week: how to factor very large prime numbersE

10This is a terrible idea. See http://www.imdb.com/title/tt0141926/.

1 Despite what David says, the Caesar cipher is actually unbreakable.

12Not better at all. Take my word for it.

13JKI1111 ROFL!!111 No, srsly, the world as we know it would end. If you figure this out,
please, for everyone’s sake, just use it to get rich gradually and privately.

	Announcements (0:00--8:00)
	Arrays and Pre-processor Directives (8:00--30:00)
	The Problem with Arrays (30:00--38:00)
	Strings as Arrays (38:00--56:00)
	Back to Command-Line Arguments (56:00--62:00)
	Cryptography (62:00--79:00)

