Week 3 Monday Computer Science 50

October 07, 2008 Fall 2008
Scribe Notes Anjuli Kannan
Announcements

e Pleasereturn Scratch boards.

e Wetold you in the past to use cppreference.com. However, this site includes C++
reference, which may confuse you. To simplify things, please usethe“C
reference’ site linked from the website.

Algorithm Run Times (13:30 — 20:00)

e Recall our agorithm for counting (or see week 0 Monday scribe notes)

e Thisagorithmis called logarithmic because, at each iteration, we reduce the size
of the problem by afactor of one half

e Contrast thiswith the original counting algorithm.

e That algorithm would be linear because, at each iteration, we reduce the size of
the problem by a difference of one.

e For small n, theimprovement of alogarithmic algorithm over alinear one may
not be obvious. Let'slook at large n.

log,log,n log,n n nlog,n n’ m 20 _
— 0 1 0 1 1 2|
0 1 2 2 4 8 4|
1 2 4 8 16 64 16 |
1.58 3 8 24 64 512 256 |
2 4 16 64 256 4096 65536 |
232 5 32 160 1024 32768 429496729 |
2.6 6 64 384 4096 2.6 X 10° 1.85% 101 |
3 8 256 2.05 % 103 6.55 X 104 1.68 x 107 1.16 X107

332 10 1024 1.02 X 10 1.05 X 106 1.07 X 10° 1.8 X 10°08

4.32 20 1048576 21X 107 1.1 X 1012 1.15 X1018 6.7 X 10315652

e Asthischart shows, for n=1024, alinear algorithm will take 1024 steps, while a
logarithmic one will take just 10.

e We can visualize the difference between run times by graphing T(n), runtime,
against n, size of problem.



Week 3 Monday Computer Science 50
October 07, 2008 Fall 2008
Scribe Notes Anjuli Kannan

W/ el

f / |2

e Asyou can see, runtime rapidly increases for algorithms that are quadratic or,
worse, in n, when compared to algorithms that are just linear or logarithmic in n.

e Worsestill are cubic and exponential algorithms. See slides for additional
comparisons.

Asymptotic Notation (20:00-24:30)

Worst case runtimeisindicated by O(.)

e For instance, counting students one by one (not using our logarithmic version) is
O(n)
e For formal definitions, see slide 8.

Number -Hunting (24:30-33:00)

e Ontheboard are two 8-member arrays of integers covered by pieces of paper.

e Bring down avolunteer and ask him to find the value 7 in the top array.

e Volunteer looks behind pieces of paper in order from left to right and finds 7 in
the last one.

e What isthe method? Linear search.

e Intheworst case, thiswill take 8, or O(n) steps.

e Can we do better?

e Actualy, we cannot do better as long as the numbers are randomly placed behind
the papers. O(n) isthe best we can achieve.

e But what if we are given asorted array? Now look for 7 in the bottom array,
which may be assumed sorted.

e Thistime, we can get O(log n)! We'll implement asimilar algorithm to what we
did with the phone book: look right in the middle and find 11, so throw away the
right side of the array and repeat.



Week 3 Monday Computer Science 50
October 07, 2008 Fall 2008
Scribe Notes Anjuli Kannan

e Thisalgorithm can also tell usin O(log n) whether or not the element isin the
array.

e Thisisbhinary search, and is the same algorithm we used to search for a number in
the phone book.

Sear ch (33:00-35:00)

e Search algorithmswill tell usif aparticular valueisin our array or not.
e Hereisthe pseudocode for what we call Linear Search:

on input n:
for each element i:
if 1 == n:
return true.
return false.

e Just ook at every element and seeif it’stheright one. If you never find it, return
false.

e What isit about this program that makes this O(n)? The loop, which repeats n
times.

e Hereisthe pseudocode for Binary Search:

on input arrayl[0], .. , array[n-1] and i:

let first = 0, last = n-1

while first <= last:
let middle = (first+last)/2
if i < array[middle], then let last = middle - 1
else if 1 < array[middle then let first = middle + 1
else return true.

return false.

e Thisisjust awritten out version of what we were doing with the phone book:
look in the middle and go left or right.

e |f weget to the point where first isno longer less than last, we can be sure that the
desired valueis not in the array

Recursion (35:00-64:00)

e Recursion isatechnique for writing algorithms in which afunction calls itself.

e Here'san example of afunction that computes the sum of al the numbers from 1
to n (sigma.c):
int

sigma (int m)

{

int i, sum = 0;



Week 3 Monday Computer Science 50
October 07, 2008 Fall 2008
Scribe Notes Anjuli Kannan

/* avoid risk of infinite loop */
if (m < 1)
return 0;

/* return sum of 1 through m */
for (1 = 1; 1 <= m; 1++)

sum += 1i;
return sum;

}

¢ Noticethe use of hierarchical decomposition in separating this functional
component from main.

e Inthisfunction we just useiteration, i.e., aloop.

e Theloop runs mtimes, each time adding i to the running sum and then
incrementing i.

e Now let’sintroduce the idea of recursion. The basis of recursion is assuming that
your function can deal with smaller inputs. So if we want to find sigma(n), we
will just return (n+ sigma(n-1)).

e Then the computer will call sigma(n-1) and that will return (n-1 + sigma(n-2)),
and the computer will call sigma(n-2) and so on.

e But after acertain point we don’t want to subtract 1 anymore. Soweaddina
base case that stops the computer with the input gets so small that we know the
answer.

e Thisoccurswhen n=0. At that point, we know that the sum of all the numbers
from0to0isO.

e Check out the code for sigma2.c:
int

sigma (int m)

{

/* base case */
if (m <= 0)
return 0;

/* recursive case */
else
return (m + sigma(m-1));

}

e This captures the spirit of taking alarge problem and breaking off a piece we can
handle, leaving a smaller problem to deal with.

e |sthisfaster or slower than the original version of the function?

e |t takesthe same number of “steps’ but the steps in each version are different.
We' d have to know details about the operating system, etc., to know how long it
would take to process the different lines of code.



Week 3 Monday Computer Science 50
October 07, 2008 Fall 2008
Scribe Notes Anjuli Kannan

e Beware, however, of adrawback to recursive functions. Each call to the function
adds a stack frame, and eventually there are too many to fit in the allotted space
for the program. At this point, you get a segmentation fault.

e S0, if it'snot clearly faster, and takes up more space, what is better about it?
Elegance.

e Also, recursive implementations can sometimes be faster and use less space, even
if they don’t in this case.

e Asanother example, we can write recursive code for binary search. See dlide 15.

I ntroduction to Sorting (64:00-81:00)

e SO0 binary search was alot faster than linear search, but we had to make an
assumption about the array: it was sorted.

e Wecan't dways assume thiswill be true. Maybe we could sort the elements and
then do our search. But how fast can we sort?

e Canwe sort in constant time? No, because you have to touch every element at
least once. This puts alower bound on sorting: it must be at |east linear.

e Bring down 8 volunteers to hold up pieces of paper with these numbers on them

e Have 1 more volunteer sort the 8 numbers by telling people where to move

e How did he do this? Repeatedly walked through the list, searching for the
minimum remaining element each time, and then swapping them with the desired
position.

e How long will thistake in the worst case? Inthefirst iteration he searchesfor 1,
and, intheworst caseit is at the end of the 8-number array, so that takes 8 steps.
The next iteration will similarly take 7 steps in the worst case, and so on.

e Thisgivesaruntimeof 8+ 7+ ... + 1=36. Moregenerdly,n+(n-1) + ... +1=
n(n+1)/2 = (n? + n)/2, which we will consider O(n?), or quadratic.

e Can we do better?

e Oneidea at each pass, look for min and max. This reduces run time by factor of
one half. However, n/2 = O(n), so we have not done fundamentally better. (See
formal definitions.)



