Computer Science 50

Introduction to Computer Science I

Harvard College

Week 3

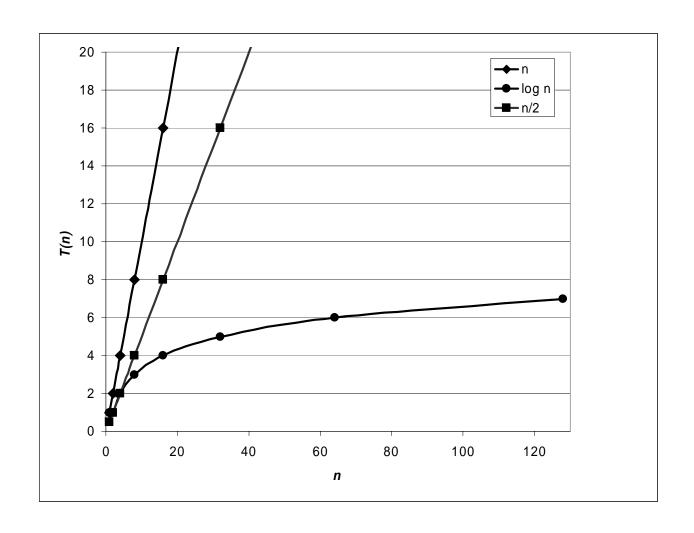
David J. Malan malan@post.harvard.edu

Divide and Conquer

Parallel Processing

- 1) Stand up.
- 2) Think to yourself "I am #1".
- Pair up with someone; add your numbers together; take that sum as your new number.
- 4) One of you should sit down.
- 5) GOTO step 3 if still standing.

Running Time

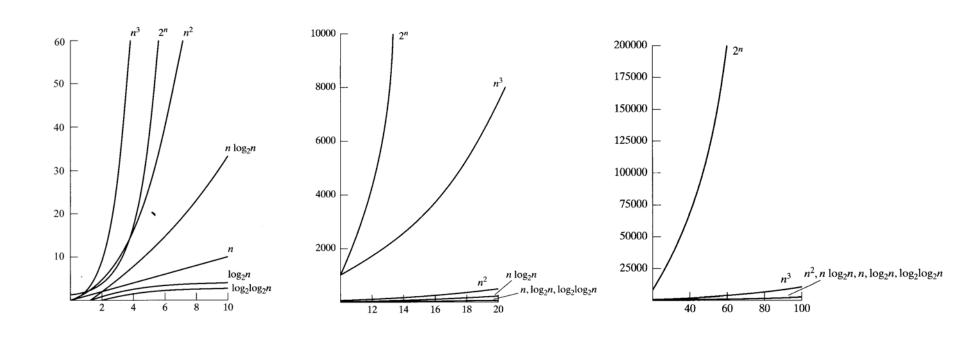


Running Time

$\log_2 \log_2 n$	log ₂ n	n	n log ₂ n	n ²	n ³	2 ⁿ
	0	1	0	1	1	2
0	1	2	2	4	8	4
1	2	4	8	16	64	16
1.58	3	8	24	64	512	256
2	4	16	64	256	4096	65536
2.32	5	32	160	1024	32768	4294967296
2.6	6	64	384	4096	2.6×10^{5}	1.85×10^{19}
3	8	256	2.05×10^{3}	6.55×10^4	1.68×10^{7}	1.16×10^{77}
3.32	10	1024	1.02×10^{4}	1.05×10^6	1.07×10^{9}	1.8×10^{308}
4.32	20	1048576	2.1×10^7	1.1×10^{12}	1.15×10^{18}	6.7×10^{315652}

TABLE 7.1 COMMON COMPUTING TIME FUNCTIONS

Running Time T(n)



Asymptotic Notation Informally

Asymptotic Notation

Formally

$$T(n) \in O(f(n))$$

We say that the running time, T(n), of an algorithm is "in big O of f of n" iff there exist an integer $n_0 > 0$ and a real number c > 0 such that $T(n) \le c \cdot f(n)$ for all $n \ge n_0$.

$$T(n) \in \Theta(f(n))$$

We say that the running time, T(n), of an algorithm is "in theta of f of n" iff there exist an integer n_0 and real numbers c_1 , $c_2 > 0$ such that $c_1 \cdot f(n) \le T(n) \le c_2 \cdot f(n)$ for all $n \ge n_0$.

$$T(n) \in \Omega(f(n))$$

We say that the running time, T(n), of an algorithm is "in omega of f of n" iff there exist an integer n_0 and a real number c > 0 such that $T(n) \ge c \cdot f(n)$ for all $n \ge n_0$.

O In English

:: O(1) "constant"

 $:: O(\log n)$ "logarithmic"

:: O(n) "linear"

 $O(n \log n)$ "supralinear"

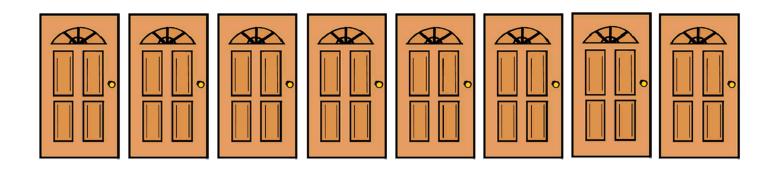
 $O(n^2)$ "quadratic"

 $O(n^c)$ "polynomial"

 $O(c^n)$ "exponential"

O(n!) "factorial"

Searching



Linear Search

Pseudocode

```
On input n:

For each element i:

If i == n:

Return true.

Return false.
```

Binary Search

Iterative Pseudocode

```
On input array[0], ..., array[n - 1] and k:
   Let first = 0.
Let last = n - 1.
While first <= last:
   Let middle = (first + last ) / 2.
   If k < array[middle] then let last = middle - 1.
   Else if k > array[middle] then let first = middle + 1.
   Else return true.
Return false.
```

Sum Looping

Get it?

```
int
sigma(int m)
    // avoid risk of infinite loop
    if (m < 1)
        return 0;
    // return sum of 1 through m
    int sum = 0;
    for (int i = 1; i <= m; i++)
        sum += i;
    return sum;
                                  see
                               sigma1.c
```

Sum Recursion

Get it yet?

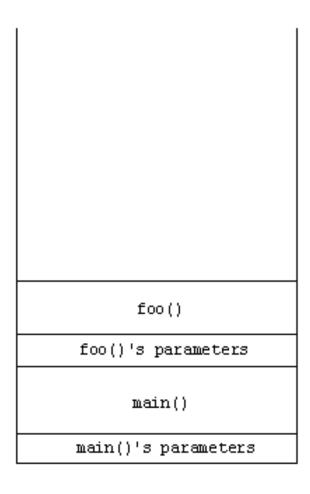
```
int
sigma(int m)
{
    // base case
    if (m <= 0)
        return 0;

    // recursive case
    else
        return (m + sigma(m-1));
}</pre>
```

see sigma2.c

The Stack, Revisited

Frames



Binary Search

Recursive Pseudocode

```
On input array, first, last, and k, define recurse as:
   If first > last then return false.
   Let middle = (first + last) / 2.
   Else if k < array[middle] then
        return recurse(array, first, middle - 1, k).
   Else if k > array[middle] then
        return recurse(array, middle + 1, last, k).
   Else return true.
```

Sorting

4 2 6 8 1 3 7 5

Bubble Sort

Pseudocode

```
Repeat n times:

For each element i:

If element i and its neighbor are out of order:

Swap them.
```

Selection Sort

Pseudocode

```
Let i := 0.

Repeat n times:

Find smallest value, s, between i and list's end, inclusive.

Swap s with value at location i.

Let i := i + 1.
```

Sorting Visualization

Pseudocode

```
On input of n elements:

If n < 2, return.

Else

Sort left half of elements.

Sort right half of elements.

Merge sorted halves.
```

Pseudocode

$$T(n) = 0$$
, if $n < 2$

$$T(n) = T(n/2) + T(n/2) + O(n)$$
, if $n > 1$

How long does it take to sort 16 elements?

$$T(16) = 2T(8) + 16$$
 $T(8) = 2T(4) + 8$
 $T(4) = 2T(2) + 4$
 $T(2) = 2T(1) + 2$
 $T(1) = 0$

$$T(1) = 0$$

 $T(2) = 2T(1) + 2 = 0 + 2 = 2$
 $T(4) = 2T(2) + 4 = 4 + 4 = 8$
 $T(8) = 2T(4) + 8 = 16 + 8 = 24$
 $T(16) = 2T(8) + 16 = 48 + 16 = 64$

Sorting Visualization

All Sorts of Sorts

Heap Sort
Insertion Sort
Quicksort
Radix Sort
Shell Sort

. . .

Tradeoffs

Space, Time, ...

Computer Science 50

Introduction to Computer Science I

Harvard College

Week 3

David J. Malan malan@post.harvard.edu