Computer Science 50 Week 4 Wednesday: October 15, 2008
Fall 2008 Andrew Sellergren, Anjuli Kannan
Scribe Notes

Contents

1 Announcements (0:00-11:00)| 2

|2 Pointers (11:00—62:00)| 2
2.1 Passing By Value| 2
2.2 Passing By Reference|. 0oL 4
2.3~ Pointer Arithmetido o 9

|13 Dynamic Memory Allocation (62:00—75:00)| 9

Computer Science 50 Week 4 Wednesday: October 15, 2008
Fall 2008 Andrew Sellergren, Anjuli Kannan
Scribe Notes

1 Announcements (0:00-11:00)

Computers are not smarter than humansﬂ Read about the results| of the
latest attempt to pass the Turing test.

339 Games of 15

“Lunch with David” on Fridays: e-mail rsvp@cs50.net if you’d like to
join.

Use the Bulletin Board! Your question might already be answered, or, if
not, it will be answered by a member of the staff or perhaps even a fellow
student.

Thanks to Amazon! The next problem sets will be hosted by their EC2
service.

Thanks to Microsoft] Check out all the software| which is yours to down-
load and use through the MSDN Academic Alliance.

1 new handout.

6 new lolcansus.

2 Pointers (11:00-62:00)

2.1 Passing By Value
e Why doesn’t this function in buggy3.c work as we might expect?
void
swap(int a, int b)
{
int tmp;
tmp = a;
a = b;
b = tmp;
}
The variables declared inside swap() (e.g. tmp, a, and b) are local to that
function. This means that they are stored on the stack and as soon as
swap () returns, they will effectively disappear.
e What would this look like in memory? Take a look at this step-by-step
representation of the stack frame in buggy3.c:
TYet, ..

2Thank you, Mrs. Malan! Sorry, Connecticut, you’ll have to restock.
3Tablets. We has them.

http://tech.slashdot.org/tech/08/10/13/1450205.shtml
http://aws.amazon.com/ec2/
http://cs50.net/software/
http://xkcd.com/251/

Computer Science 50 Week 4 Wednesday: October 15, 2008
Fall 2008 Andrew Sellergren, Anjuli Kannan
Scribe Notes

1. Before we call swap(), the variables x and y are stored in main’s
frame at two different memory addresses (we’ll call them 0x0 and
0x4 for simplicity) with values 1 and QEI

rmain)
O Oxd
int x inty
1 2

2. When we call swap (), copies of the variables x and y are passed to it
as arguments. These become variables a and b which are stored on
a new stack frame belonging to swap ().

swap(]
inta int b
] 2
maing
Ox0 O
it = inty
] 2

3. Next, we declare a variable tmp, which will also be stored on the stack
frame of swap(), and assign it the value of a.

swapf]
inta int irit trog
2 1 1
mcing)
Ox0 Oxd
intx int v
! 2

4Note that in lecture, David uses memory addresses 1 and 2 along with values 7 and 8 in
his example. Don’t be confused!

Computer Science 50 Week 4 Wednesday: October 15, 2008
Fall 2008 Andrew Sellergren, Anjuli Kannan
Scribe Notes

4. Once swap () returns, however, the memory in its stack frame is freed
and the stack returns to the state it was in before swap () was calledﬂ

2.2 Passing By Reference

e How do we fix this? We need to pass by reference as opposed to value.
Passing by reference is a way of telling a function where in memory a
variable is stored. Thus, when it accesses and changes it, the change lasts
even after the function has returned. Check out swap.c to see what we're
talking about:

void
swap(int *a, int *b)
{
int tmp;
tmp = *a;
*a = *b;
*b = tmp;
X

Notice the stars in front of a and b in our function definition. These are
not int’s but rather pointers to int’s. That is, they are addresses in
memory, so they point to where an int is stored.

e How do we pass by reference? Notice the one syntax change in main()
between buggy3.c and swap.c:

swap (&x, &y);

The ampersand (&) is the “address of” operator, meaning the arguments
to swap () are now the addresses of x and y, instead of simply their values.
Now, we're effectively passing the variables themselves rather than copies
of those variables.

e What are the advantages and disadvantages of this? The advantage is
greater control for the programmer. The disadvantage is potential ex-
ploitation since there is very little to stop someone from accessing any
address in memory. This is part of the reason why these low-level details
are obscured in higher-level programming languages such as Java.

e Let’s walk through the new swap () line by line while looking at the stack:

1. int tmp;

5This is not entirely true. The values of of our variables might actually still be stored
there, but they stand to be overwritten at any time if another function is called or our
program otherwise needs to store something on the stack. Thus, the memory is not “ours”
anymore!

Computer Science 50 Week 4 Wednesday: October 15, 2008

Fall 2008

Andrew Sellergren, Anjuli Kannan

Scribe Notes

3.

swap(]
it * o it * b it trogs
00 | o4
rncing]
Ox(O
it ity
! 2

Here, again we’re declaring tmp as an int local to the function
swap(). However, notice now that the variables a and b are not
storing values but rather memory addresses, specifically those of x
and y! When called upon, they can tell where x and y are located in
memory so that our function can access and change them directly.

tmp = *a;

swapf]
int*a int * k> irit trog
OO0 | ox4 [1
main]
Ox0 x4
intx int v
1 Z2

Notice the star in front of a. This is the dereferencing operator.
The whole line reads “assign to tmp whatever is stored in memory at
a.” Once we’ve done that, tmp stores the value 1, as shown in the

diagram.

*a = *b;

Computer Science 50 Week 4 Wednesday: October 15, 2008
Fall 2008 Andrew Sellergren, Anjuli Kannan
Scribe Notes

swap(]
int * o int * k> irit trop
00 | oxd | 1
rcing
0x0 x4
int % inty
2 2

This line is a little harder to follow, but pay attention to the dia-
gram. We're saying “assign to the memory at a whatever is stored
in memory at b.” This is the first part of the swap! We’ve actually
modified the memory of main!

4. *b = tmp;

swap(]

int * o int * k> irit trop
0x0 [oxd | 1

rcing

0x0 Oxd

int % inty
2 1

And the swap is complete! Note that we don’t use a star in front
of tmp in this line. That’s because we don’t care about where tmp
is stored, we're only using it to temporarily hold a value. We don’t
care what happens to it after swap() returns.

5. [return;]

rcing
D O
int % inty
2 1

Computer Science 50 Week 4 Wednesday: October 15, 2008
Fall 2008 Andrew Sellergren, Anjuli Kannan
Scribe Notes

Finally, swap() returns (albeit not explicitly in the code since its
type is void). Unlike in buggy3.c, however, the values of x and y
have actually been swapped!

e What if we were to write tmp = a; when we’ve passed a as a pointer?
When we compile, we’ll get an error which says “assignment makes integer
from pointer without a cast.” This is a cryptic warning which means that
we have a type mismatch in our variable assignment. We could change
it to tmp = (int) a; to make this warning go away, but this would be
forcibly converting a memory address to an int, which we probably don’t
want either.

e Pointers are often represented in diagrams as an arrow pointing to a box
representing a chunk of memory with some value stored in it. When you
declare a variable, you are getting one of these chunks of memory with a
something unknown stored in it (often represented as a question mark).
Check out the [tutorial at How Stuff Works for a good visualization of
pointers (the same that David uses in lecture).

e Remember, we've been using pointers all along. Every time you’ve de-
clared main you've typed char *argv[] as one of its arguments. Turns
out that an array is actually a pointer as well. When you declare an ar-
ray, it returns a pointer to the first chunk of memory where that array
is stored. If we declare an array int a[5] and then a pointer which we
initialize as int *p = a, then we can access the first int stored in the
array by writing either a[0] or *p.

e Keep in mind the implications of this: if only the start of the array is
stored, then it’s up to you to remember where the end of the array is
stored! The program comparel.c is an example of using pointers incor-
rectly:

int

main(int argc, char *argv[])

{
// get line of text
printf("Say something: ");
char *sl1 = GetString();

// get another line of text
printf("Say something: ");
char *s2 = GetString();

// try (and fail) to compare strings
if (sl == s2)

printf("You typed the same thing!\n");
else

http://computer.howstuffworks.com/c22.htm

Computer Science 50 Week 4 Wednesday: October 15, 2008
Fall 2008 Andrew Sellergren, Anjuli Kannan
Scribe Notes

printf("You typed different things!\n");
}

What is a char * exactly? Well, it’s the same thing as a string. For
the first few weeks, we defined our own type called string so that you
wouldn’t have to worry about what a pointer was! So what does GetString()
actually return, then? A pointer to the first character!

e So what’s wrong with this program then? Take a look at condition
s1 == s2. What are we actually comparing? Well, s1 and s2 are actu-
ally just storing memory addresses. If we compare them, they will never
be equal, even if the strings they store are the same. Try compiling and
running comparel.c. Even if you type the same input twice in a row, the
output is “You typed different things!”

e How should we actually go about comparing strings? Well, we’re going to
have to compare them one character at a time. So we’ll write some kind
of loop that steps through each string until it hits the NULL terminator
in one of the strings. Take a look at compare2.c which uses a function
called strcmp():

int

main(int argc, char *argv[])

{
// get line of text
printf("Say something: ");
char *sl1 = GetString();

// get another line of text
printf("Say something: ");
char *s2 = GetString();

// try to compare strings
if (sl != NULL && s2 !'= NULL)

{
if (!stremp(sl, s2))
printf("You typed the same thing!\n");
else
printf("You typed different things!\n");
}

3

If we look at the man page of strecmp (), we see that it takes two const charx*’s
as arguments. What does the const mean? What you would expect: it
means that the char *’s will not be modified by the function. This is a
safety check: now that we're passing by reference as opposed to value, we
don’t want our memory to be modified without our consent!

Computer Science 50 Week 4 Wednesday: October 15, 2008
Fall 2008 Andrew Sellergren, Anjuli Kannan
Scribe Notes

e Notice that strcmp() returns a positive value, a negative value, or 0.
These correspond to greater than, less than, or equal to, which might
come in handy if you're trying to sort, for example. In compare2.c, we
check simply if stremp() returns non-zero (with the ! being the unary
NOT operator).

e If we pass nothing to compare2, then no message is printed. This is
because the outer condition (s1 != NULL...) is false in this case. What
does GetString() return when it fails? It returns NULL, which is analogous
to returning false for a function with type int.

2.3 Pointer Arithmetic

e What other syntactic tricks can we do with pointers? Because arrays are
stored as contiguous chunks of memory, we can access them using pointer
arithmetic. To get the second element of an array called foo[], for exam-
ple, we could write either foo[1] or *(foo+1). Check out pointersl.c
to see how this works.

e Moving on to pointers2.c:

int
main(int argc, char xargv[])
{
int numbers[] = {1, 2, 3, 4, 5};

printf("Size of array is ’%d.\n", sizeof (numbers));

printf ("Size of each element is %d.\n", sizeof (numbers[0]));

for (int i = 0, n = sizeof(numbers) / sizeof (numbers[0]); i < n; i++)
printf ("%d\n", *(numbers+i));

}

Note that sizeof (numbers) / sizeof (numbers[0]) is a trick to deter-
mine the number of elements in an array. However, ignore it for a moment
and focus on the pointer arithmetic. Now we have an array of int’s and
yet we're still only adding 1 as an offset each time we access the array.
If this 1 corresponds to a byte, won’t we actually the first 5 bytes of the
array rather than the 5 elements? Turns out the compiler can actually
figure out the size of each element and increment by that size each time,
so the program works as we’d hoped.

3 Dynamic Memory Allocation (62:00—-75:00)

e So far, we’ve only been able to allocate memory by declaring a variable
which is stored on the stack. What’s the problem with this? If that
stack frame disappears, so does the variable. We get around this in the
Game of Fifteen by using a global variable, which isn’t stored on the stack.

Computer Science 50 Week 4 Wednesday: October 15, 2008
Fall 2008 Andrew Sellergren, Anjuli Kannan
Scribe Notes

Generally, these are frowned upon, but for the game board it makes sense
to have a variable which is stored somewhat permanently.

What if we don’t know how much space we’ll need to store something, say,
a name in a database? One of the advantages of C is that it allows us to
ask for memory whenever we want it. We do this using a function called
malloc().

We've actually been using malloc() all along. The function GetString()
begins by asking for memory to store a string. In fact, this memory is
actually never explicitly freed, so it results in what’s called a memory leak.
Over time, this unfreed memory can build up and cause your computer to
slow down. Good programming practice is to explicitly free any memory
we’ve allocated by making a call to free().

To see how free() is used, take a look at copyl.c and copy2.c. Both
intend to copy a string and capitalize its first letter, but the former actually
capitalizes both the input and the output. What’s the problem? Simply
assigning a string to a new pointer, as in the line char *s2 = s1; will
actually initialize a pointer to the same memory storing the first string.
Thus, if you change one, you change both.

A correct implementation of copying a string is achieved in copy2. cﬂ

int
main(int argc, char *argv[])
{
// get line of text
printf("Say something: ");
char #*s1 = GetString();
if (s1 == NULL)
return 1;

// allocate enough space for copy
char *s2 = malloc((strlen(sl) + 1) * sizeof(char));
if (s2 == NULL)

return 1;

// copy string

int n = strlen(sl);

for (int i = 0; i < n; i++)
s2[i] = s1[il;

s2[n] = °\0’;

// change copy

6Note that this code has fixed the bugs which David got called out for during lecture. Tsk
tsk.

10

Computer Science 50 Week 4 Wednesday: October 15, 2008
Fall 2008 Andrew Sellergren, Anjuli Kannan
Scribe Notes

printf ("Capitalizing copy...\n");
if (strlen(s2) > 0)
s2[0] = toupper(s2[0]);

// print original and copy
printf ("Original: %s\n", s1);
printf ("Copy: %s\n", s2);

// free memory
free(sl);
free(s2);

}

Here, using malloc () we’ve allocated separate memory for the copy. We've
specified the amount of memory we’ll need as (strlen(sl) + 1) * sizeof (char).
The + 1 is necessary so that we have room for the NULL terminator. We

also make sure to check the return value of malloc(). If we don’t get the
memory we asked for, we want to be sure we don’t try to store anything

there!

e Know that malloc() allocates memory on the heap as opposed to the
stack!

e Anticlimactic conclusion!

11

	Announcements (0:00--11:00)
	Pointers (11:00--62:00)
	Passing By Value
	Passing By Reference
	Pointer Arithmetic

	Dynamic Memory Allocation (62:00--75:00)

