
Computer Science 50
Fall 2008
Scribe Notes

Week 5 Wednesday: October 22, 2008
Andrew Sellergren, Anjuli Kannan

Contents

1 Announcements (0:00–5:00) 2

2 ncurses (5:00–13:00) 2

3 CS 50’s Library (13:00–32:00) 3

4 Dangerous Functions (32:00–40:00) 5

5 Safe Code (40:00–61:00) 6

6 Structs (61:00–72:00) 8

1



Computer Science 50
Fall 2008
Scribe Notes

Week 5 Wednesday: October 22, 2008
Andrew Sellergren, Anjuli Kannan

1 Announcements (0:00–5:00)

• Mark Wahlberg talks to animals.1

• CS 50 will do its best to remain apolitical during these heated times.2

• Quiz next Wednesday! Don’t come to Sanders, though—check here to see
what room you’ve been assigned to based on your last name.

• From the course website: “A course-wide review session for Quiz 0 will take
place this Friday (10/24) from 1:00 P.M. until 2:30 P.M. in Northwest Sci-
ence B101; it will be filmed and made available online by Sunday (10/26).
Sections on Sunday (10/26), Monday (10/27), and Tuesday (10/28) will
offer additional review. Note that last year’s quizzes are available along
with sample solutions.

• No lunch with David this week.3

• Use the Bulletin Board! Your question might already be answered, or, if
not, it will be answered by a member of the staff or perhaps even a fellow
student.

2 ncurses (5:00–13:00)

• What is it? It’s an application programming interface (API) for C which
allows us to add graphics to our programs. You’ll be using this for Problem
Set 4 so that you don’t have to reinvent the wheel in order to display colors,
move the cursor left and right, etc.

• To start using the ncurses library, you run the function initscr(). A
call to start_color() enables your terminal to support color.

• To initialize the colors for your terminal window, call init_pair() and
provide it with the pair number as well as a background color and a
foreground color.

• ncurses gives you the ability to split up your window into “screens” of
varying sizes. For Problem Set 4, we’ll use just one: stdscr, which covers
the whole window. We’ll pass this to the macro getmaxyx(). Don’t worry
about the difference between a function and a macro just yet.

• The short program that David wrote intends to place a char in every
single space on a 24x80 window. The trick is in the lines of code where
attroff() and attron() are called depending on whether the boolean
variable on is true or false.

1No, srsly this time.
2Go Perot!
3/

2

http://cs50.net/lectures/weeks/5/aboutquiz0.pdf
http://www.nbc.com/Saturday_Night_Live/video/clips/mark-wahlberg-backstage/773862/


Computer Science 50
Fall 2008
Scribe Notes

Week 5 Wednesday: October 22, 2008
Andrew Sellergren, Anjuli Kannan

initscr();
start_color();
init_pair(1, COLOR_BLACK, COLOR_RED);

int y, x;
getmaxyx(stdscr, y, x);
bool on = false;
bool on = false;
for (int i = 0; i < x; i++)
{

for (int j = 0; j < y; j++)
{

mvaddch(j, i, ’ ’);
if (on)

attroff(COLOR_PAIR(1));
else

attron(COLOR_PAIR(1));
on = !on;

}
}
refresh();
while(1);

• Note that none of the changes we make to the screen will actually show
until we call the function refresh();

• What happens when we try to compile though? We get a lot of undefined
reference compiler errors. Well, we forgot to #include and link the
ncurses library. Once we do that, the program compiles and runs, show-
ing a pattern of red!

3 CS 50’s Library (13:00–32:00)

• Recall that the secret to GetChar() and GetInt() was a call to sscanf()
which allowed us to take user input and also perform some error checking.

• Why do we pass &x in scanf1.c? Because we want to put a value into
x, not get one from it. We’re giving scanf() the memory address of x so
that it can alter what’s stored there:

int
main(int argc, char *argv[])
{

int x;
printf("Number please: ");
scanf("%d", &x);

3



Computer Science 50
Fall 2008
Scribe Notes

Week 5 Wednesday: October 22, 2008
Andrew Sellergren, Anjuli Kannan

printf("Thanks for the %d!\n", x);
}

• So what’s different (and more dangerous) about scanf2.c?

int
main(int argc, char *argv[])
{

char *buffer;
printf("String please: ");
scanf("%s", buffer);
printf("Thanks for the \"%s\"!\n", buffer);

}

We’re asking the Operating System for a 32-bit storage space for a memory
address when we declare char *buffer. However we’re trying to store a
string of indeterminate length in that 32-bit storage space!

• If we take a look at this program during runtime using GDB, we can see
that the contents of buffer are a memory address which can be written
compactly as a hexadecimal number. What’s being stored at that memory
address? Just some garbage (or so it seems).

• Even if we try to overwrite the garbage, we are touching memory that
we don’t “own” and we’ll most likely get a segmentation fault, which will
cause a core file to be dumped.

• Using GDB, we can examine the core file that was dumped. Run gdb
scanf2 core.

• Turns out the program failed while in the function vfscanf(). How can
we debug this if we didn’t write its code ourselves?

• If we type backtrace, we can get a look at the stack just before the
program seg faulted. If we’re lucky, this will point us to a line number
that the program reached before quitting.

• We can also use the frame command to peel off the layers of the stack and
poke around. For example, we can print out the values of key variables at
the time the program crashed.

• How do we fix scanf2.c? Take a look at scanf3.c:

int
main(int argc, char *argv[])
{

char buffer[16];
printf("String please: ");

4



Computer Science 50
Fall 2008
Scribe Notes

Week 5 Wednesday: October 22, 2008
Andrew Sellergren, Anjuli Kannan

scanf("%s", buffer);
printf("Thanks for the \"%s\"!\n", buffer);

}

Well, this actually doesn’t really fix the underlying problem. Now, we can
store a few more characters, but the program will still crash if we overrun
buffer by giving it a long string as input.

• Note that in this program, there’s no obvious way to check the number
of characters in a user’s input. In GetInt(), we dealt with this by using
the formatting placeholders %d and %c to ensure that we would read in 40
bits, maximally (32-bit int plus 8-bit char).

• On the other hand, GetString() reads input one char at a time. If we
run out of space, we have to ask for more memory, copy the current string
into a new, bigger amount of memory, and then free the old string. This
is a pain!

4 Dangerous Functions (32:00–40:00)

• Although dynamically growing memory is a pain, it’s at least safer that
not growing it at all. Consider these dangerous functions:

– gets

– scanf

– strcpy

– strcat

– printf

– fprintf

• If we look at the man page for gets(), we see that it reads a line from
stdin until a terminating newline or EOF is received. However, the page
notes that “no check for buffer overrun is performed.” This is a huge bug!
In fact, gets() will keep reading in characters indefinitely if the caller
isn’t careful!4

• What about strcpy()? It’s biggest problem is that it doesn’t check to
make sure the destination string has enough memory to store the source
string which it will copy into it. The good news is that there’s another

4David made a mistake here regarding fscanf() so it won’t be on the quiz! Woohoo! It
went like this:

1. David misspoke during lecture.

2. ????

3. PROFIT!

5



Computer Science 50
Fall 2008
Scribe Notes

Week 5 Wednesday: October 22, 2008
Andrew Sellergren, Anjuli Kannan

function called strncpy() which does check lengths. You should always
use strncpy() rather than strcpy()! strncpy() takes as a third ar-
gument a size_t, which is simply a generalized typedef (see Monday’s
lecture), referring to an int.

• So what’s the big deal? David has a Linux server under his desk.5 No,
that’s not the big deal—rather, it’s the fact that on any given night, the
server gets hit hundreds of times by scripts trying to guess passwords and
log in. Threats abound!

5 Safe Code (40:00–61:00)

• Here’s a good example:

int
main(int argc, char *argv[])
{

int i;
for (i = 1; i < argc; i++) {

printf("%s "‘, argv[i]);
}
printf("\n");

}

What does it do? It prints out the command-line arguments it was given.

• Here’s an unsafe version of the same program:

void echo_arg(const char s[])
{

char buf[MAX_BUF_SIZE];
strcpy(buf, s);
printf("%s ", buf);

}

int main(int argc, char *argv[])
{

int i;
for (i = 1; i < argc; i++) {

echo_arg(argv[i]);
}
printf("\n");

}

5I wonder what else is under there. Old Chinese food? A discarded computer?

6

http://www.homestarrunner.com/sbemail48.html


Computer Science 50
Fall 2008
Scribe Notes

Week 5 Wednesday: October 22, 2008
Andrew Sellergren, Anjuli Kannan

Now, instead of printing out the array of command-line arguments, we
pass it to another function as a const char[]. This means, remember,
that the function can’t change the array.

• What makes this unsafe? It only allocates enough memory for an array of
size MAX_BUF_SIZE, but never checks user input to make sure it is smaller
than this.

• Finally, take a look at another unsafe version put together by Mike Smith:

void gotcha()
{

printf("\nGotcha!\n");
}

void echo_arg(const char s[])
{

char buf[MAX_BUF_SIZE];
strcpy(buf, s);
printf("%s ", buf);

}

int main(int argc, char *argv[])
{

int i;
for (i = 1; i < argc; i++) {

echo_arg(argv[i]);
}
printf("\n");

}

Notice that there is no call to gotcha() in the code itself. And yet, if
we provide this program with certain malicious input, we can induce it to
execute this function!

• What we’ve been taking for granted up until now is that stack frames
quickly and easily get lopped off once the functions they belong to reach
their return statement. But how does this happen exactly? The memory
address of the calling frame is actually written on the stack so that once
a function finishes executing, it knows where to return. However, if we
manage to unintentionally or intentionally overwrite this return address,
the function might return to an entirely different location in memory. We
can overwrite this return address by overrunning a buffer—that is, storing
something too-large for it.

• A Perl script written by Jason Gao will automate the hacking process.
Notice that we fill the buffer with the numbers “1234” and then overrun

7



Computer Science 50
Fall 2008
Scribe Notes

Week 5 Wednesday: October 22, 2008
Andrew Sellergren, Anjuli Kannan

it with a series of hexadecimal numbers which, as it turns out, form the
address in memory of the gotcha() function. We can see this address by
running GDB and executing the command print gotcha.

• When we run hack.pl eco from the command line, we print “Gotcha!”
to stdout.

• This is scary, no? Many web servers are written in languages like C and
even today are vulnerable to attacks like this. Let it be clear that we don’t
in any way advocate (or tolerate) this kind of behavior!

6 Structs (61:00–72:00)

• Recall from last time the syntax for declaring a struct:

// structure representing a student
typedef struct
{

int id;
char *name;
char *house;

}
student;

Note that it’s not entirely necessary for us to use typedef when we declare
a struct, but this enables us to write student instead of struct student
every time we want to declare.

• Take a look at structs1.c:

#include <cs50.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include "structs.h"

// class size
#define STUDENTS 3

int
main(int argc, char *argv[])
{

// declare class
student class[STUDENTS];

8



Computer Science 50
Fall 2008
Scribe Notes

Week 5 Wednesday: October 22, 2008
Andrew Sellergren, Anjuli Kannan

// populate class with user’s input
for (int i = 0; i < STUDENTS; i++)
{

printf("Student’s ID: ");
class[i].id = GetInt();

printf("Student’s name: ");
class[i].name = GetString();

printf("Student’s house: ");
class[i].house = GetString();
printf("\n");

}

// now print anyone in Mather
for (int i = 0; i < STUDENTS; i++)

if (strcmp(class[i].house, "Mather") == 0)
printf("%s is in Mather!\n\n", class[i].name);

// free memory
for (int i = 0; i < STUDENTS; i++)
{

free(class[i].name);
free(class[i].house);

}
}

In this program, we declare an array of struct’s, ask the user for input
to populate it, and loop over it, checking for any students in Mather so
that we can call them out. Notice the syntax whereby we use a period to
refer to the inner elements of a struct. Also notice that we are finally
explicitly free’ing memory that we allocated!

• If we look at structs2.c, we see another first:

#include <cs50.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include "structs.h"

// class size
#define STUDENTS 3

9



Computer Science 50
Fall 2008
Scribe Notes

Week 5 Wednesday: October 22, 2008
Andrew Sellergren, Anjuli Kannan

int
main(int argc, char *argv[])
{

// declare class
student class[STUDENTS];

// populate class with user’s input
for (int i = 0; i < STUDENTS; i++)
{

printf("Student’s ID: ");
class[i].id = GetInt();

printf("Student’s name: ");
class[i].name = GetString();

printf("Student’s house: ");
class[i].house = GetString();
printf("\n");

}

// now print anyone in Mather
for (int i = 0; i < STUDENTS; i++)

if (strcmp(class[i].house, "Mather") == 0)
printf("%s is in Mather!\n\n", class[i].name);

// let’s save these students to disk
FILE *fp = fopen("database", "w");
if (fp != NULL)
{

for (int i = 0; i < STUDENTS; i++)
{

fprintf(fp, "%d\n", class[i].id);
fprintf(fp, "%s\n", class[i].name);
fprintf(fp, "%s\n", class[i].house);

}
fclose(fp);

}

// free memory
for (int i = 0; i < STUDENTS; i++)
{

free(class[i].name);
free(class[i].house);

}

10



Computer Science 50
Fall 2008
Scribe Notes

Week 5 Wednesday: October 22, 2008
Andrew Sellergren, Anjuli Kannan

}

Finally, we’re offering the ability to store data persistently (i.e. on disk).
The function fopen() tries to open a file to write to. It takes as its first
argument the filename and as its second argument, the mode to open it
in, in this case “w” for write mode.

• If we compile and run structs2.c, we seemingly get the same output
as with structs1; however, this time, we end up with a new file called
database that stores our data.

• Implicit in this database file is its format. Basically, it’s how you decided
to store the data—the particular pattern that it’s written in. Every file
format is simply this: a specific output pattern for storing data which can
be read by a matching input program.

• For Problem Set 5, you’ll be taking advantage of this when we provide you
with a formatted camera memory stick. Your job will be to recover the
data which has been “erased” by interpreting the specific patterns which
appear!

11


	Announcements (0:00--5:00)
	ncurses (5:00--13:00)
	CS 50's Library (13:00--32:00)
	Dangerous Functions (32:00--40:00)
	Safe Code (40:00--61:00)
	Structs (61:00--72:00)

