
Week 7 Monday Computer Science 50
November 03, 2008 Fall 2008
Scribe Notes Anjuli Kannan

Announcements (0:00 – 5:00)

A Simple Voting Program (5:00 - 8:00)

• David’s e-voting program asks you repeatedly to enter 1 for Obama or 9 for
McCain, then prints the tally at the end

• Note the design decision to make the numbers for the two candidates far apart, to
address the fat finger error

• Also creates a paper trail by printing votes to a file as they are entered
• After voting is done, this file can be piped through grep (finds a word) and wc

(counts words) to doublecheck the tally

Grades (8:00 – 12:45)

Valgrind (12:45 – 18:45)

• A useful tool to find memory-related bugs
• In memory.c, we see two bugs in the function f()

o Never free memory that is malloc-ed
o Indexing outside of the boundaries of the array

• But when we run this program, we don’t get a seg fault
• Seg faults do not always happen when you go out of bounds
• As for the memory leak, these usually will not become evident unless the program

is running for a very long time to the point that there is a noticeable lag
• We can use valgrind to check for memory leaks by running the following

command:
valgrind –v –leak-check=full memory

• The relevant part of the print out is where it says “invalid write of size 4”
• The print out also tells us the problematic line and function, so we can locate and

remove the error
• We also see under “LEAK SUMMARY” that we’ve lost 40 bytes in one block
• This refers to the array that we malloc-ed and did not free

Hex (18:45 – 24:30)

• Just as decimal is base 10 and binary is base 2, hexadecimal is base 16
• This means we have 16 counting digits: 0, 1, …, 9, a, b, c, d, e, f
• This is useful because we can take 4 bits and represent them with a single hex

digit
• For instance, 0001 in binary is 0x1 in hex, and 1111 in binary is 0xf in binary (15

in decimal)
• (0x is notation meaning “here comes a hex number”)
• We can quickly convert between hex and binary by expanding each hex digit to

four binary digits: 0xff = 1111 1111 (255 in decimal) since 0xf = 1111

Week 7 Monday Computer Science 50
November 03, 2008 Fall 2008
Scribe Notes Anjuli Kannan

• Why bother using hex at all?
o Convenient to represent a byte with just 2 hex digits
o This means we can represent a 32 bit address with an 8-character string
o Simpler mapping between hex and binary than between decimal and

binary

Endian-ness (24:30 – 42:30)

• If a 4 byte value is laid out from left to right (highest order bits are at lowest
memory address), the processor is big-endian.

• If a 4 byte value is laid out right to left (lowest order bits are stored at the lowest
memory address), the processor is little-endian. See slide 3.

• Your computer probably is little-endian.
• This can lead to some subtle bugs.
• Look at endian.c.
• This program, given a .bmp file, should look at the header of the file and print out

its size, which is contained in the header
• fseek is used to move to a particular point in the file
• fread reads from that location into the variable bfsize
• bfsize is then printed
• Next, we “rewind” to the beginning and read in 14 raw bytes
• We want to print starting from 2 bytes after buffer, so add 2 to buffer
• Then, we want to print out 4 bytes at once, so cast the pointer from a char * to a

long *. Then, dereference the long * to go to the location and read the 4 bytes
• Next, we print the bytes individually using buffer[2], … , buffer[5], in decimal,

hex, and finally binary
• From the output we see that if we read in the 4 bytes as a long, and print it out, we

are given 58
• But if we print out the four bytes individually, we see that they are, from right to

left: 58 0 0 0, or 0x3a 0x00 0x00 0x00, or 0011 1010 0000 0000
• As this demonstrates, the bytes that compose value 58, which would be 0000

0000 1010 0011 in binary, are laid out right to left as 0011 1010 0000 0000
• If you didn’t know that it was little-endian, you would read it as 11101000000000
• But fread has apparently accounted for this and known to switch the order of the

bytes before converting to decimal

Bitwise Operators (42:30 – 57:30)

• Bitwise operators compute the result of performing an operation bit by bit on
inputs

• We will see logical operators and (&), or (|), not (~), xor (^)
• Refer to truth tables if you are unfamiliar with any of these operators
• Can also do left shift (<<) and right shift (>>)

Week 7 Monday Computer Science 50
November 03, 2008 Fall 2008
Scribe Notes Anjuli Kannan

• These shift the bits by the number specified, and pad the “empty space” remaining
with zeroes

• Left shift is an efficient way to double a number
• Left shift also good for making a mask when you only want to look at some

particular bits
• Referring back to endian.c, look at inner loop. Here we desire to print out each

bit. To do this, we “bitwise and” the full byte with each of 8 masks: 10000000,
01000000, 00100000, etc. (The masks are computed by repeatedly doing a left
shift on 1)

• To perform a bitwise “and” on, for example, 11111111 and 10000000, we go
from left to right and-ing the bits in the same column to get the result for that
column. So 11111111 & 10000000 = 10000000. It has ones only where there is
a one in both inputs.

• Each time, if we get a nonzero result from mask & buffer[i], we know there was a
1 in buffer[i] at the location where there is a one in the mask.

• Home exercise: How can you swap two variables using bitwise operators only?

 Hash Tables (57:30 – 77:00)

• What was frustrating about arrays? Growth.
• Growth became easier with linked lists. What was a disadvantage of linked lists?

Waste memory on metadata, give up random access.
• In general, we want to address the problems of linear time lookup, insertion, and

deletion.
• We can get closer to constant time operations using hash tables.
• Suppose we want to store students who are identified by ID numbers.
• In hash tables, we fix the size of our array at a size n. Suppose n = 6.
• As we get students, we want to put them into the array based on their ID numbers.
• We can put student 1 in the first slot, and student 2 in the second slot, but what

about when student 7 comes along?
• One option is just to put him in the next available slot (the third slot).

o Then our algorithm is, given a student, put him in the next available slot.
o In the worst case, this is O(n) insertion. But we can be smart and keep

track of the next available slot, resulting in constant time.
o Lookup, however, remains linear because, when we go to look for student

7, we have no idea where he’ll be.
• Another option is to put student X in slot X mod n.

o This will map every integer to a number between 0 and 6, which
corresponds perfectly to the slots of the array.

o This is also deterministic, so it should make finding a student more
efficient than it was with the previous algorithm.

o In this case, we take student 7, and find that 7 mod 6 = 1. But there is
already a number in slot 1. What to do?

 One option is two put it in the next available slot after slot 1.

Week 7 Monday Computer Science 50
November 03, 2008 Fall 2008
Scribe Notes Anjuli Kannan

• This is called linear probing.
• The algorithm for insertion is: take X, map to h(X) using

some hash function h(.), then put in next available slot after
slot h(X)

• The algorithm for lookup is: take X, map to h(X) and start a
linear search from slot h(X) until an empty slot is hit

• Both of these are O(n), but in practice, are much closer to
constant time.

 How much closer to constant time? This depends on a few things,
including the function and the size of the array. It also depends on
the number of collisions we expect while putting elements in the
array.

 The problem of collisions (in a group of m values, what is the
probability that 2 or more map to the same of n hash values?) is
analogous to the birthday problem (in a group of m people, what is
the probability that 2 have the same birthday?)

• If you are not familiar with the birthday problem see its
entry on Wikipedia.

• You may be surprised to learn that you need only 23 people
to have a >50% probability that 2 or more people have the
same birthday

• We can use similar math to figure out the probability of
collisions for a particular hash table.

 Another option is to do linear probing, but to leave a pointer in the
place where 7 originally mapped to the place where 7 ended up

• This is called coalesced chaining
 A third option is to put a linked list in each slot. Then when 7

maps to slot 1, just hook him on to the growing linked list there.
• This is called separate chaining.
• If the hash function is good, the list in each slot will be

roughly the same size, n/m.
• Then insertion, deletion, and lookup are O(n/m)

