Computer Science 50 Week 7 Wednesday: November 5, 2008
Fall 2008 Andrew Sellergren, Anjuli Kannan

Scribe Notes

Contents

L Announcements (0:00—2:00)| 2
|2 Hash Tables and Linked Lists (2:00—37:00)| 2
|3 Trees and Tries (37:00-53:00)| 5
4 Heaps (53:00-72:00)| 7

Computer Science 50 Week 7 Wednesday: November 5, 2008
Fall 2008 Andrew Sellergren, Anjuli Kannan
Scribe Notes

1 Announcements (0:00-2:00)

The Simpsons is the greatest show on television.

Lunch with David is back this Weekﬂ E-mail rsvp@cs50.net if you're
interested.

Use the Bulletin Board! Your question might already be answered, or, if
not, it will be answered by a member of the staff or perhaps even a fellow
student.

Only three announcements this WeekEI

2 Hash Tables and Linked Lists (2:00-37:00)

Last week we looked at linked lists. Recall what the asymptotic running
time of searching a linked list? O(n). What advantage did they have,
though? We have a lot more control over insert and delete as well as how
much memory our data structure takes up.

Can we achieve constant time for search or insert? Hash tables get us
pretty darn close, though they still have collisions. Remember the birthday
problem.

With coalesce chaining, we keep a small amount of metadata that allows
us to remember where we hashed to when we inserted an element. Think
of them as bread crumbs.

In its typical implementation, a hash table is not much different from an
array—it has a fixed size. Each of its elements, however, is a pointer to the
beginning of a linked list.

Linked lists, if you recall, are implemented as connected nodes, each of
which holds some value as well as a pointer to the next node.

Say we have a node which holds a char * and a next pointer. How big is
this node? 8 bytes, 4 for each pointer!

More accurately, though, this doesn’t capture how much space our linked
list takes up, because the names themselves have to be stored somewhere,
as well. Instead, we could define a node as containing a next pointer and
an array of char’s. To be safe, we’ll declare an array of size 1024 just in
case someone has a really long nameﬂ Specifying this fixed size for name
storage will cost us in memory, but will save us in speed, since we won’t
have to make multiple calls to malloc, as we would if we use a char *.

lo

2Those of you who thought to yourself “Actually, four,” congratulations! Click here| to
claim your prize!

3Say, Apu Nahasapeemapetilon or Selma Bouvier-Terwilliger-Hutz-McClure-Simpson, to
take two examples from real life.

http://ca.youtube.com/watch?v=oHg5SJYRHA0

Computer Science 50 Week 7 Wednesday: November 5, 2008
Fall 2008 Andrew Sellergren, Anjuli Kannan
Scribe Notes

e Once we start storing more than just a value in each of our nodes, we
should begin to think about defining another structure to store our data
so that it doesn’t get mixed in with our metadata:

typedef struct

{
int id;
char *name;
char *house;
}
student;

typedef struct node

{
student *student;
struct node *next;
}
node;

Why did we write the word node before the second set of curly braces,
but not the word student before the first set of curly braces? We need a
temporary name so that in the second struct definition, we can tell the
compiler what type of data structure the next pointer will be pointing to.

e Looking at the traverse() function from last week’s 1list2.c:

void
traverse ()
{
// traverse list
printf ("\nLIST IS NOW: ");
node *ptr = first;
while (ptr != NULL)

{
printf("%s of %s (%d) ",
ptr->student->name, ptr->student->house, ptr->student->id);
ptr = ptr—->next;
X

// flush standard output since we haven’t outputted any newlines yet
fflush(stdout) ;

// pause before continuing
sleep(1);
printf ("\n\n");

Computer Science 50 Week 7 Wednesday: November 5, 2008
Fall 2008 Andrew Sellergren, Anjuli Kannan
Scribe Notes

Notice the use of arrow notation. What is first? Is it a local variable?
No, in fact, it’s a global, and it’s our entire linked list! Or rather, it’s all
we need to keep track of in order to access the linked list. Why did we
write ptr->student->name and not ptr->student.name? Quite simply
because student is a pointer! We need to dereference it before we access
its contents.

e This week, you'll be making design decisions in order to optimize the
search time of a spell checker. If you want it to be as fast as possible, you
might think about implementing a hash table.

e What exactly is a hash function? It’s a mathematical method of deter-
mining an index into the array of linked lists which is our hash table.

e If we're hashing an int, an ID number, for example, then using the modulo
operator seems like a pretty clear choice. What if we’re hashing a string,
however?

e We could take the first letter, cast it to an int and begin with something
similar to this:

int

hash(char *s)

{
char ¢ = s[0];
return ((int) c % 6);

Can this code crash? Most certainly yes! We should think about checking
for NULL, although you should realize that it’s not very easy to come up
with an integer value which will obviously signify an error and yet not be
a valid index into our array!

e A minor matter: it might be a good idea to invoke toupper() so as to
standardize inputs and make sure that uppercase and lowercase are treated
similar. (A name lazily entered in lowercase is still the same name.)

e What are the advantages of this function? It’s simple, easy-to-code, deter-
ministic. And the disadvantages? There probably aren’t as many people
whose names start with Q as there are people whose names start with A
or B. So we’re going to get clustering around certain indices.

e How do we fix this? We could try the second letter of the name, but it’s
probably distributed as unevenly as the first letter. Why not hash the
entire name? We could walk through and sum through the letters of the
name to come up with a relatively unique number for each name.

Computer Science 50 Week 7 Wednesday: November 5, 2008
Fall 2008 Andrew Sellergren, Anjuli Kannan
Scribe Notes

e What happens after we hash? Well, we want to follow the pointer at that
index in the array (assuming it’s non-NULL). If we’re searching for a name,
we’ll have to walk through all the nodes in that particular linked list. If
we’re inserting, we probably want to insert at the beginning of the linked
list because this can be done in constant time.

e Can we get even fasterfﬁ Yes! But first, a two-minute break.

3 Treed’| and Tries (37:00-53:00)

(3
@ @ @

e Knowing nothing about these data structures known as trees, what can
you tell from the diagram above?

e Notice that each node branches into exactly two nodes (and the left node
holds a smaller value than the right). These two nodes are called the
children of that node. Because there are exactly two, this is a special
case of a tree known as a binary search tree. Don’t let the name fool
you, though, because a naively implemented BST can have search time in

O(n).

e A trie is similar to a tree, except that each of its nodes is actually an array.
In the context of dictionaries (hint hint), each of these arrays might be of
size 26, as in the diagram below:

4No. Linked list : data structures :: Caesar’s cipher : cryptography.
5Heh.

http://en.wikipedia.org/wiki/Trees

Computer Science 50 Week 7 Wednesday: November 5, 2008
Fall 2008 Andrew Sellergren, Anjuli Kannan
Scribe Notes

Al _[E

E3

M|

il e [F] 3
—|
—
=
=

]
0]
O]
M

[~

=

EHzHE
> []<MO

=

L=
m

[}

=T
Si-EHEHE
B gHgFl

We walk through a trie much the same way we walk through a hash table.
Each letter in the word we’re looking up is also its index into the next
level of the trie. So if we’re looking up the name Maxwell, we first hash
to M, then to A, then to X, etc. What happens when we get to the end
of a word? We need some sort of flag (represented as a triangle in the
diagram above) that marks the end of a word. That way, if two words
share a prefix (e.g. Max and Maxwell), we will know that both of them
are in our trie if this end-of-word flag is set at both the X and the last L.

e What’s the lookup time of a trie? Constant time! (O(k), we'll call it).
This is an improvement, at least theoretically, on the lookup time of a

hash table, which we might write as O(n/m), where m is the size of our
hash table.

Computer Science 50 Week 7 Wednesday: November 5, 2008
Fall 2008 Andrew Sellergren, Anjuli Kannan
Scribe Notes

4 Heaps (53:00-72:00)

e Let’s talk about heapsﬁ Probably best to present this definition in full.
A heap is a binary tree that:

— is complete (i.e., every level of the tree is completely filled with
nodes except for, perhaps, the bottommost level, whose nodes are in
the leftmost locations)

— satisfies the heap-order property (i.e., each node’s value is greater
than or equal to that of each of its children, if any)

e Heapifying an almost—hea;ﬂ involves first manipulating the bottom, left-
most cluster so that it satisfies the two properties above, then working
upward and to the right, taking larger and larger clusters until the entire
tree is heapified.

0

The general process, as you can hopefully follow in this diagram, is to take
a node and ask: is it bigger than its children? If not, swap it with the
bigger of the two children. And again, proceed upward and to the right.
The good news is that since the height of a binary tree is log n, heapifying
a binary tree is in O(nlogn).

e How can we leverage this? We can sort an array in place using heap-
sort, thus chipping away at quadratic running times without using extra
memory, as mergesort required.

SMan, I’'m bad at transitions, huh?
7Srsly, what is this, Dr. Seuss?

Computer Science 50 Week 7 Wednesday: November 5, 2008
Fall 2008 Andrew Sellergren, Anjuli Kannan
Scribe Notes

e Heapsort works by finding the biggest value in the tree and putting it
at the end of the list by swapping it with the smallest value. Then, we
eliminate this biggest value from consideration and repeat the process.
Worst-case scenario, the smallest value, when swapped to the root, will
have to bubble down through logn steps in order to be put back in place.
Thus, to take an arbitrary array of numbers, create a tree, and heapify
that tree, all in O(2nlogn), which, in fact, is the same as O(nlogn). The
really neat trick is that we can store this heapsorted list of numbers in
a single array! Turns out that the index location of a left child node is
2i + 1 and the index location of a right child node is 2i + 2. That’s all
there is to it!

e Why can’t I ever find a good way to end these notes!?

	Announcements (0:00--2:00)
	Hash Tables and Linked Lists (2:00--37:00)
	Trees and Tries (37:00--53:00)
	Heaps (53:00--72:00)

