
0

Computer Science 50
Introduction to Computer Science I

Harvard College

David J. Malan
malan@post.harvard.edu

Week 7

1

Valgrind
http://valgrind.org/docs/manual/quick-start.html

% valgrind -v --leak-check=full a.out
...

==23596== Invalid write of size 4

==23596== at 0x80486DF: f (memory.c:22)

==23596== by 0x80486FC: main (memory.c:29)

...

==23596== 40 bytes in 1 blocks are definitely lost in loss record 1 of 1

==23596== at 0x4023595: malloc (vg_replace_malloc.c:149)

==23596== by 0x80486D5: f (memory.c:21)

==23596== by 0x80486FC: main (memory.c:29)

see
memory.c

2

Hexadecimal

Image from http://toughpigs.com/labels/fanaticism.html.

0x01, ah ah ah....
0x02, ah ah ah...
0x03, ah ah ah...

3

Endianness

see
endian.c

Image from http://en.wikipedia.org/wiki/Endianness.

4

Bitwise Operators
& bitwise AND
| bitwise OR
^ bitwise XOR
~ ones complement
<< left shift
>> right shift

5

Bitwise Operators

see
binary.c, tolower.c, toupper.c

6

Bitwise Operators
Swapping Values

see
swap2.c

7

Bitwise Operators
Swapping Values

see
swap2.c

8

Hash Tables
Linear Probing

9

Hash Tables
The Birthday Problem

In a room of n CS 50 students,
what’s the probability that at least

two students share the same birthday?

10

Hash Tables
The Birthday Problem

Image from http://en.wikipedia.org/wiki/Birthday_paradox.

11

Hash Tables
The Birthday Problem

Image from http://www.mste.uiuc.edu/reese/birthday/probchart.GIF.

12

Hash Tables
Coalesced Chaining

Figure from Lewis and Denenberg’s Data Structures & Their Algorithms.

13

Hash Tables
Separate Chaining

Figure from Lewis and Denenberg’s Data Structures & Their Algorithms.

14

Trees

Figure by Larry Nyhoff.

15

Binary Search Trees

Figure from http://cs.calvin.edu/books/c++/ds/1e/.

55

77

88664422

33

16

Tries

Figure from Lewis and Denenberg’s Data Structures & Their Algorithms.

17

Heaps

Figures by Larry Nyhoff.

A heap is a binary tree that
is complete (i.e., every level of the tree is completely filled with
nodes except for, perhaps, the bottommost level, whose nodes
are in the leftmost locations)
satisfies the heap-order property (i.e., each node’s value is
greater than or equal to that of each of its children, if any)

18

Heapifying an Almost Heap

Figures by Larry Nyhoff.

19

Heapifying a Binary Tree

Figure by Larry Nyhoff.

20

Heapsort
35 15 77 60 22 41

Figure by Larry Nyhoff.

21

Heapsort
35 15 77 60 22 41

Figure by Larry Nyhoff.

22

Morse Code

Image adapted from Wikipedia.

23

Huffman Coding
Immediate Decodability

Pseudocode by Larry Nyhoff.

1) Initialize a list of one-node binary trees containing weights w1, w2, ... , wn,
one for each of the characters C1, C2, ... , Cn.

2) Do the following n – 1 times:
a) Find two trees T ' and T '' in this list with roots of minimal weight w ' and w ''.
b) Replace these two trees with a binary tree whose root has weight w ' + w ''

and whose subtrees are T ' and T ''; label the pointers to these subtrees 0
and 1, respectively:

3) The code for character Ci is the bit string labeling the path from root to
leaf Ci in the final binary tree.

24

Huffman Coding
Example

25

Huffman Coding
Example

Figures by Larry Nyhoff.

26

Huffman Coding
Example

Figure by Larry Nyhoff.

27

Huffman Coding
Example

Figure by Larry Nyhoff.

28

Huffman Coding
Example

Figure by Larry Nyhoff.

29

Huffman Coding
Example

Figure by Larry Nyhoff.

30

Huffman Coding
Example

31

Huffman Coding
Problem?

0 1 0 1 0 1 1 0 1 0

32

Huffman Coding
In C

typedef struct node
{

char symbol;

int frequency;

struct node *left;

struct node *right;
}

node;

33

Computer Science 50
Introduction to Computer Science I

Harvard College

David J. Malan
malan@post.harvard.edu

Week 7

