
Computer Science 50
Fall 2008
Scribe Notes

Week 8 Wednesday: November 12, 2008
Andrew Sellergren, Anjuli Kannan

Contents

1 Announcements (0:00–6:00) 2

2 PHP (6:00–47:00) 2

3 Two Minute Break (47:00–47:00) 7

4 More PHP (47:00–60:00 7

5 SQL (60:00–77:00) 8

1

Computer Science 50
Fall 2008
Scribe Notes

Week 8 Wednesday: November 12, 2008
Andrew Sellergren, Anjuli Kannan

1 Announcements (0:00–6:00)

• Apologies about teh cloud! As it turns out, a few students’ programs
were hogging resources by gulping up more and more RAM via valgrind.
We’ve since put a cap on the resources which a machine is allowed to use
in the hopes that this problem will be prevented in the future. If you’re
having problems, please e-mail sysadmins@cs50.net instead of griping
during OHs!

• Final Projects! Send your TF an e-mail by Monday containing your pre-
proposal. Don’t fret too much about this, just take it as encouragement to
get the creative juices flowing. Your TF will be able to refocus your idea
and help you narrow it down to a manageable programming task. Note
the typo—the relevant e-mail address is projects@cs50.net.

• Google’s I’m Feeling Lucky button? It costs them $110 million per year,
according to this article. This is because the 1% of users who click it
actually skip the ad pages.

• Use the Bulletin Board! Your question might already be answered, or, if
not, it will be answered by a member of the staff or perhaps even a fellow
student.

• Only three announcements this week!1

2 PHP (6:00–47:00)

• Dynamic web pages! Using PHP and SQL in addition to HTML enables
us to respond to user’s input instead of simply blinking and flashing.

• Check out our google.html:

<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Fake Google</title>

</head>
<body>
<div align="center">

1Those of you who thought to yourself “Wow, I can’t believe he didn’t change this from
last week’s notes,” congratulations! Click here to claim your prize!

2

http://valleywag.com/tech/google/im-feeling-lucky-button-costs-google-110-million-per-year-324927.php
http://ca.youtube.com/watch?v=oHg5SJYRHA0

Computer Science 50
Fall 2008
Scribe Notes

Week 8 Wednesday: November 12, 2008
Andrew Sellergren, Anjuli Kannan

<form action="http://www.google.com/search" name="f"

method="post">
<input name="hl" type="hidden" value="en">
<input autocomplete="off" maxlength="2048"
name="q" size="55" title="Google Search" value="" />

<input name="btnG" type="submit" value="Fake

Google Search" />
<input name="btnI" type="submit" value="I’m Feeling

Lucky">
</form>

</div>
</body>

</html>

What is contained at the URL specified by the action attribute? As you
might’ve guessed, it’s not simply an HTML file, but rather a program,
perhaps written in Python or PHP. Facebook, the website we all love to
hate, is written in large part in PHP.

• How is user input communicated to the server? If we open an extension
called Live HTTP Headers in Firefox, we can see how this is done when
we execute a Google search.

• Notice that part of the header is the string “GET /search?hl=en&q=cs50. . . ”
The values after the question mark are known as parameters. One of them,
as you can see, is cs50 which is our search string.

• What happens if we change the URL by adding a +harvard after the
cs50? It’s as if we searched for “cs50 harvard.” By doing this, we’ve
entirely circumvented the web form.

• Know that there’s a reasonable limit on the length of a URL, usually a
hundred characters or so, lest a browser not have a buffer large enough to
store it.

• There’s another type of search submission, however, called POST as op-
posed to GET. This enables us to submit a great deal more data to a web
page. We specify that we want to use POST rather than GET by writing
method="post" in the form tag.

• Also check out the Firefox extension Firebug which enables you to view
source code of web pages in a well-organized way.

• Let’s look at some more code!

3

Computer Science 50
Fall 2008
Scribe Notes

Week 8 Wednesday: November 12, 2008
Andrew Sellergren, Anjuli Kannan

<html>

<head>
<title>Frosh IMs</title>

</head>
<body>
<form action="register2.php" method="get">
Name: <input name="name" size="40" />

Dorm: <input name="dorm" size="40" />

Email: <input name="email" size="40" />

<input type="submit" value="Register!" />

</form>

</body>

</html>

This highly sophisticated web form for Freshman IMs was originally whipped
up by David when he was a sophomore intent on teaching himself Perl and
saving himself a trip to Wigglesworth to drop off a registration form.

• What happens when we try to access froshims2.html? We get a HTTP
403 error, meaning forbidden. We need to run the command chmod 644
to make it world-readable.

• PHP is an interpreted language, as opposed to a compiled language like C.
This means that we don’t run our source code through a compiler to get
object code, as with C, but rather that we run it through an interpreter
in order to execute it. This has performance implications: in general, pro-
grams in C and other compiled languages are much faster than programs
in PHP and other interpreted languages.

• Every PHP program begins and ends with these tags:

<?php

?>

This alerts the browser that there is code to be executed, not merely
displayed.

4

Computer Science 50
Fall 2008
Scribe Notes

Week 8 Wednesday: November 12, 2008
Andrew Sellergren, Anjuli Kannan

• PHP files don’t need to be world-readable in order to be executed. This
is so that your source code don’t get ganked!2

• How do we get at the data the user has submitted? We’re going to access
the superglobal variables, which are the following:

– $_COOKIE

– $_ENV

– $_FILES

– $_GET

– $_POST

– $_REQUEST

– $_SERVER

– $_SESSION

Two of these are especially important to us at this stage, namely $_GET
and $_POST. These are arrays filled with the parameters the user has
provided via an HTML form.

• If we write print_r($_GET); in our register2.php file, we get out the
user’s input. Adding the <pre> tag beforehand will display it in a little
more readable format.

• What kind of data structure is $_GET? We’ve actually seen it before—a
hash table! It simply maps keys to values.

• One useful feature of PHP is that it can be integrated inline with HTML.
For example, we can write:

<html>
<body>

Hello, <?php print($_GET["name"]); ?>. You live in
DORM. Your e-mail is EMAIL.

</body>
</html>

When we reload the web page, notice that “Hello, David.” is printed.
If we view the page’s source, it is indeed written directly in the HTML.
That’s because our PHP was interpreted before the page finished loading.
Its output was inserted directly into our HTML!

• Now we can write:
2i.e. stolen

5

Computer Science 50
Fall 2008
Scribe Notes

Week 8 Wednesday: November 12, 2008
Andrew Sellergren, Anjuli Kannan

<html>
<body>

Hello, <?php print($_GET["name"]); ?>. You live in
<?php print($_GET["dorm"]); ?>. Your e-mail is
<?php print($_GET["name"]); ?>

</body>
</html>

If we want to make the e-mail address appear as a URL, we can enclose
it in the <a> tag set the href attribute equal to it like so:

<html>
<body>

Hello, <?php print($_GET["name"]); ?>. You live in
<?php print($_GET["dorm"]); ?>. Your e-mail is <a href="
mailto:<?php print($_GET["name"]); ?>">e-mail me!!!.

</body>
</html>

• PHP is one of the best languages to learn after C because it’s so freakin’
easy!!!111 Check out the online manual. One of our hopes is that you’ll be
able to teach yourself new programming languages when you’re finished
with this course.

• PHP variables are a cinch because they don’t have explicit types. Whether
you want a string, an int, or a bool, you simply name it with a $ before it.
Under the hood, of course, PHP knows the difference between data types.

• PHP also has an entire suite of functions specifically designed to handle
arrays!

• If we look at index.html, we notice that the following line displays an
image from file:

• If we want to be extremely annoying, we can display it multiple times
using a familiar for loop:

<?php for($i = 0; $i < 5; $i++) {

print ’’;
print "\n";

}

• Another feature of PHP is regular expressions, which allow you to check
and match patterns. This is particularly useful in validating user input.

6

http://use3.php.net/manual/en/
http://us2.php.net/array

Computer Science 50
Fall 2008
Scribe Notes

Week 8 Wednesday: November 12, 2008
Andrew Sellergren, Anjuli Kannan

• In the login directory of this week’s source code, you’ll find multiple PHP
files which implement a website’s login functionality in various ways.

3 Two Minute Break (47:00–47:00)

• Hey guys. Big Gulps, huh?3

4 More PHP (47:00–60:00

• Check out the source code of froshims.html to see how to implement
the other types of HTML forms. Notice that it uses (invisible) tables to
standardize the page layout.

• How does a web page remember a user? If we take a look at Live HTTP
Headers again, we can see a very long string in the Cookie field. PHP
will plant on the user’s computer a variable called PHPSESSID. This is
a pseudo-randomly generated cookie value which uniquely identifies the
user. When the user accesses the server again, his browser will send back
this cookie to tell the server who it is. This cookie can also be used to
save personal information such as usernames, passwords, preferences.

• Take a look at login1.php and notice the following line:

<form action="<?php echo $_SERVER["PHP_SELF"]; ?>"
method="post">

This is an explicit way of telling the browser to submit the form to itself.
Thus, when we submit our login information, the page we’re on we’ll be
reloaded.

• What else does the $_SERVER superglobal contain? If we print it out, we
can see the user’s IP address, browser type, and a whole lot more.

• How do we enable sessions in PHP? A simple call to session_start()
will do!

• As we keep walking through login1.php one line a time, we find a hard-
coded username and password followed by two calls to the function isset().
As you might’ve guessed, isset() simply checks that a variable has a
value. Once we’ve verified that the “user” and “pass” fields weren’t empty
when submitted, we compare them to the hard-coded username and pass-
word to validate them.

• If we validate our user, we can add a simple boolean to our $_SESSION
global like so:

$_SESSION["Authenticated"] = TRUE;

3Welp, see ya later!

7

http://www.youtube.com/watch?v=3g1KcOw7zas

Computer Science 50
Fall 2008
Scribe Notes

Week 8 Wednesday: November 12, 2008
Andrew Sellergren, Anjuli Kannan

That’s all it takes to know whether a user is logged in or not.

• Once we have validated a user’s login, we can redirect him to our home
page using these lines of code:

// redirect user to home page, using absolute path
$host = $_SERVER[’HTTP_HOST’];
$path = rtrim(dirname($_SERVER[’PHP_SELF’]), ’/\\’);
header("Location: http://$host$uri/home.php");
exit;

• When we sniff the web traffic using Live HTTP Headers, we notice that
the server returns HTTP 302 Moved Temporarily. This is because we
issued it the redirect request, as detailed above.

• Notice that we have no else condition on our login validation, so if the user
does not login successfully, the rest of the code of login1.php executes.
As it’s written, the user will get kicked back to the login page and the
message “INVALID LOGIN” will display. What condition do we check
before displaying this message? In fact, we check count($_POST) > 0.
In other words, if the user got to this point in our code after clicking the
Submit button, then he must have provided an invalid login (because a
successful login will redirect and then exit). Therefore, if there is anything
at all in the $_POST global array, then we can be sure that the login was
invalid and we can display an appropriate message.

• Obviously, each time a user registers at your website, you’re not going
to hard-code their username and password into your PHP files. More
practically, you’ll want to do this by interacting with a database. The
language of databases is SQL.

5 SQL (60:00–77:00)

• In order to interact with your MySQL database for the next problem
set, we’ve installed DirectAdmin (thanks to a donation) which provides a
convenient web panel. All you’ll have to do to administer your database,
then, is open up your browser and login to the web-based interface.

• If we click Create New Database, we can name it whatever we want and
also add a new user and password entirely through the web-based interface,
which generates and executes the SQL automatically for us. Another such
tool for accomplishing this is phpMyAdmin, which is freely available.

• Don’t worry, Problem Set 7’s specification will walk you through this!

• Oracle, SQL Server, and MySQL are all relational database engines. The
word relational merely implies that they use tables which are linked to
one another via one or more fields.

8

Computer Science 50
Fall 2008
Scribe Notes

Week 8 Wednesday: November 12, 2008
Andrew Sellergren, Anjuli Kannan

• Our goal is to improve on the hard-coding of usernames and passwords.
Not too hard! Let’s create a table called users which contains two
columns: user and pass. For each of the columns, we have to specify
a data type. Let’s keep it simple: we’ll declare them as VARCHAR and
specify their(maximum) Length/Values. Let’s also set them to “not null,”
meaning exactly what you think it means.

• In relational databases, there exists the concept of primary keys, fields
which by definition are unique. Having primary keys on the tables in our
database will greatly improve lookup time. In this case, it makes sense to
specify the username as our primary key because we don’t want the same
username to map to multiple different passwords. It wouldn’t make sense
to specify the pass field as unique because it would prevent two users from
having the same password.

• For performance reasons, you can also specify a field as an index or as
unique, which like primary keys, are optimized for lookup.

• If we click Save, a SQL query will be displayed. This is the code that
phpMyAdmin has automatically generated and executed for us. Back in
the day,4 these SQL commands were executed from the command line.

• Now that we have a database running on the server, let’s connect to it using
PHP. Take a look at login5.php and notice that it contains code almost
identical to login1.php but with these lines, among others, inserted:

// connect to database
if (($connection = mysql_connect("localhost",

"malan_real",
"12345")) === FALSE)

die("Could not connect to database");

// select database
if (mysql_select_db("malan_real", $connection) === FALSE)

die("Could not select database");

The server name is localhost because the database is on the same server
as the web server. Only by coincidence is the username the same as the
database name, malan_real. The login validation is almost identical to
login1.php, with the exception, at least, of the following line:

$sql = sprintf("SELECT * FROM users WHERE user=‘%s’",
mysql_real_escape_string($_POST["user"]));

4When the only computer in town was as big as a barn and you had to walk 3 miles in
the snow, uphill both ways, just to wait for 5 hours in line to use it. And it used punchcards.
This is the era known as David’s “youth” or “heyday.”

9

Computer Science 50
Fall 2008
Scribe Notes

Week 8 Wednesday: November 12, 2008
Andrew Sellergren, Anjuli Kannan

What we’re doing here is querying the database for a row in the users ta-
ble which contains the submitted username. The call to mysql_real_escape_string
prevents SQL injection attacks.5 With SQL, queries of the following types,
among others, are possible:

– SELECT

– INSERT

– UPDATE

– DELETE

In this case, we want to use SELECT because our goal is to look up the
submitted username. The * indicates that we want to select all columns
for the specified row. After we add a user jharvard with password 12345
to the users table using phpMyAdmin’s web interface, the query below
will return 1 row:

SELECT * FROM users WHERE username=‘jharvard’

Note that the capitalization is merely for clarity’s sake. SQL is case-
insensitive. Now, back to the original PHP code:

$sql = sprintf("SELECT * FROM users WHERE user=’%s’"’,
mysql_real_escape_string($_POST["user"]));

As you did in pset5, we’re using sprintf to insert the submitted username
into this string which looks like a SQL query. Finally, we’re ready to
execute the query:

// execute query
$result = mysql_query($sql);
if ($result === FALSE)

die("Could not query database");

// check whether we found a row
if(mysql_num_rows($result) == 1) {

// fetch row
$row = mysql_fetch_assoc($result);

// check password
if($row["pass"] == $_POST["pass"]) {

// remember that user’s logged in
$_SESSION["authenticated"] = TRUE);

5Like this.

10

http://xkcd.com/327/

Computer Science 50
Fall 2008
Scribe Notes

Week 8 Wednesday: November 12, 2008
Andrew Sellergren, Anjuli Kannan

...
}

}

First, we check if any rows were returned by our SQL query. If none were,
then the user is not in our users table. If a single row was returned, then
we’re going to fetch it and check that the associated password matches
the password provided by the user. If it does, we remember that the user
is logged in by setting a bool in $_SESSION redirect to the homepage as
before.

• Know that MySQL comes with its own datatypes and commands which
are well-documented online.

• How might you go about implementing an e-trade website? You’ll need
a users table, for starters. Then you’ll also need to remember a stock
ticker symbol, a quantity, and a time for every stock that a user has
bought. If you want to merge data from two different tables, you’ll need
to get familiar with the SQL command JOIN.

• We might maintain two different tables for employees and orders because
we don’t want to repeat certain information like an employee’s name for
every single order. For efficiency’s sake, we split up this information, but
when we want to access that information, we need to join it back up. The
query below will accomplish just this:

SELECT Employees.Name, Orders.Product
FROM Employees, Orders
WHERE Employees.Employee_ID=Orders.Employee_ID

• For Problem Set 7, you’ll be tasked with all of this and more in imple-
menting a stock-buying website. Anything that wasn’t covered in lecture
is sure to be covered in the specification, so read up!

11

	Announcements (0:00--6:00)
	PHP (6:00--47:00)
	Two Minute Break (47:00--47:00)
	More PHP (47:00--60:00
	SQL (60:00--77:00)

