
Computer Science 50
Fall 2008
Scribe Notes

Week 9 Wednesday: November 19, 2008
Andrew Sellergren, Anjuli Kannan

Contents

1 Announcements (0:00–3:00) 2

2 SQL Injection Attacks (3:00–11:00) 2

3 DOM and AJAX (11:00–48:00) 2

4 More Fun with AJAX (48:00–57:00) 9

5 The Real World (57:00–67:00) 10

6 And Now For Something Completely Different (67:00–76:00) 11

1

Computer Science 50
Fall 2008
Scribe Notes

Week 9 Wednesday: November 19, 2008
Andrew Sellergren, Anjuli Kannan

1 Announcements (0:00–3:00)

• David is advertising for the Asian-American Brotherhood.1

• No announcements today!2

• Harvard’s shuttles now serve downtown Boston!3

• There’s still time left to complete Problem Set 5’s scavenger hunt! E-
mail your Google map’s URL to sysadmins@cs50.net before lecture on
Monday.

2 SQL Injection Attacks (3:00–11:00)

• Why should you follow the example code? SQL injections attacks are one
compelling reason.

• Remember the function mysql_real_escape_string? Besides being an
example of annoying style, it’s very useful toward protecting against SQL
injection attacks.

• Suppose a malicious user wants to hack into your server and your database.
If we pass his input directly to our mysql_query function using the $_POST
array, we’ve left ourselves vulnerable. What if instead of a password, our
user types in a SQL-like string such as 12345’ OR ‘1’ = ‘1 at the login
page? Since 1 always equals 1, the user will always be assigned a uid even
if he doesn’t have a valid login. Oops!

• The simple fix is to escape any user input that you pass to a database.
You can do this by passing the user input to mysql_real_escape_string
before inserting it into the query to be executed.

• Note that Drew is dominating The Big Board for Problem Set 7 not by any
kind of SQL injection attack or malicious input but simply by exploiting
the 15-minute delay in CS 50’s market prices.4

3 DOM and AJAX (11:00–48:00)

• Not to be confused with NOM.

• You should begin to think of every web page as a nested hierarchy of
elements, the primary ancestor being the <html> tag.

1Let it be known that he got to where he is today by being the overeager section guy.
2Congratulations to those of you who thought to yourself “Technically, that counts as an

announcement!” Click here to claim your prize!
3Orly? No, not really.
4Too bad for Drew that just as CS 50 has its own imitation market, it also has its own

imitation insider trading prison.

2

http://icanhascheezburger.com/2008/10/11/funny-pictures-nom/
http://ca.youtube.com/watch?v=oHg5SJYRHA0

Computer Science 50
Fall 2008
Scribe Notes

Week 9 Wednesday: November 19, 2008
Andrew Sellergren, Anjuli Kannan

• How is a web page represented in memory? That’s where the Document
Object Model comes into play.

At the top you have the entire Document. Beneath it, the root element,
the <html> tag. Branching off from that are, as you might expect, the
<head> and <body> tags. And so on.

• Using JavaScript and AJAX and the like, you can manipulate the DOM
such that you can grab and update content on demand. Note that Gmail
and facebook rarely require an entire window refresh to display new con-
tent. They accomplish this using AJAX calls.

• How does Shuttleboy accomplish the animation of the dots representing
shuttles? Simply by making a new HTTP request every second or so.
We can see this if we use Firefox extensions like Live HTTP Headers or
Firebug. What is getting downloaded each time? Only the position of the
bus, not the whole map.

• Question: what if the bus moves off the screen? David’s implementation
punts it to Google’s API to decide whether or not to display the red dot.

• Why is it that you see a bit of a gray flicker if you move very quickly to
new territory on Google Maps? Google has most likely modeled a map as
a series of cells or squares. If it hasn’t yet downloaded the GIFs or JPEGs
for the cells that you’ve jumped to, it must quickly make a new HTTP
request to grab and insert them on the page.

• Question: why did MapQuest and Yahoo originally use the up, down,
left, and right buttons? Partly it was that most browsers didn’t yet sup-
port AJAX but it was also a design decision on the part of Yahoo and
MapQuest.

• Question: how could you get rid of the gray flicker? Perhaps you could
pre-fetch the cells immediately surrounding the area a user is viewing

3

Computer Science 50
Fall 2008
Scribe Notes

Week 9 Wednesday: November 19, 2008
Andrew Sellergren, Anjuli Kannan

because he will most likely move up, down, left, or right within a few
seconds. This way, the transition will be seamless. What’s the downside
of this? More bandwidth is required to achieve this! It’s not free (which
is probably why Google doesn’t do it)!

• Question: doesn’t AJAX increase the load on a server? Most certainly,
yes! If we all logged in to Shuttleboy, we’d be hitting the FAS server about
300 times per second. This isn’t horribly much, but it’s not insubstantial.

• It’s very easy to make design decisions that result in unmanageable server
load. With the CS 50 Office Hours webtool, a query to Google’s servers was
being made every time the page was refreshed in order to grab the latest
OHs data. This ended up hammering the CS 50 server so hard that we
had to take it down temporarily in order to improve the implementation.

• Let’s take a look at a representation of an AJAX call:

This picture is a bit complicated, but simply consider that the lefthand
side represents the client and the righthand side represents the server. If
we apply this flow to the Shuttleboy website, we see that it makes a call
to a JavaScript function (every second) which uses an XMLHttpRequest
object, bundling together HTTP parameters (e.g. the user’s desired shut-
tle stop and destination) in order to make an HTTP request that hits
the server, which then talks to its own database, retrieves some data, and
returns it to the user interface, in this case the web page itself. Whew.

• Think of the XMLHttpRequest object as a kind of library that has all
sorts of functions within it which you can access. Some of those functions,
better known as methods in the context of object-oriented programming,
are as follows:

– abort()

– getAllResponseHeaders()

4

Computer Science 50
Fall 2008
Scribe Notes

Week 9 Wednesday: November 19, 2008
Andrew Sellergren, Anjuli Kannan

– getResponseHeader(header)

– open(method, url)

– open(method, url, async)

– open(method, url, async, user)

– open(method, url, async, user, password)

– send()

– send(data)

– setRequestHeader(header, value)

This object allows you to open a connection to a server, send data to it,
and get a response from it.

• Objects not only have methods associated with them, but also pieces of
data, a.k.a. properties. Some of the properties of the XMLHttpRequest
object are as follows:

– onreadystatechange

– readyState

∗ 0 (uninitialized)
∗ 1 (open)
∗ 2 (sent)
∗ 3 (receiving)
∗ 4 (loaded)

– responseBody

– responseText

– responseXML

– status

∗ 200 (OK)
∗ 404 (Not Found)
∗ 500 (Internal Server Error)

– statusText

The status property in particular allows us to check how the HTTP
request returned.

• Take a look at ajax1.html. Notice that aesthetically, it’s a very simple
form, but it does manage to accomplish something we haven’t yet accom-
plished: delivering content without a page refresh. If you input a stock
symbol and click Get Quote, an alert pops up to display the stock price. If
we look at this using Live HTTP Headers, we see that an HTTP request
for the file quote1.php was made with the stock symbol passed as a GET
parameter. Take a look at how we achieve this in the body of ajax1.html:

5

Computer Science 50
Fall 2008
Scribe Notes

Week 9 Wednesday: November 19, 2008
Andrew Sellergren, Anjuli Kannan

<body>
<form onsubmit="quote(); return false;">

Symbol: <input id="symbol" type="text" />

<input type="submit" value="Get Quote" />

</form>
</body>

Here, we’re deliberately telling the form not to submit itself (return false;)
but rather to make a call to our own function quote(). What’s the sub-
stance of quote()? We need only to look to the <head> tag to find out:

<head>
<script type="text/javascript">
// <![CDATA[

// an XMLHttpRequest
var xhr = null;

/*
* void
* quote()
*
* Gets a quote.
*/
function quote()
{

// instantiate XMLHttpRequest object
try
{

xhr = new XMLHttpRequest();
}
catch (e)
{

xhr = new ActiveXObject("Microsoft.XMLHTTP");
}

// handle old browsers
if (xhr == null)
{

alert("Ajax not supported by your browser!");
return;

}

// construct URL
var url = "quote1.php?symbol=" +

6

Computer Science 50
Fall 2008
Scribe Notes

Week 9 Wednesday: November 19, 2008
Andrew Sellergren, Anjuli Kannan

document.getElementById("symbol").value;

// get quote
xhr.onreadystatechange = handler;
xhr.open("GET", url, true);
xhr.send(null);

}

/*
* void
* handler()
*
* Handles the Ajax response.
*/
function handler()
{

// only handle loaded requests
if (xhr.readyState == 4)
{

if (xhr.status == 200)
alert(xhr.responseText);

else
alert("Error with Ajax call!");

}
}

//]]>
</script>
<title></title>

</head>

Notice we declare a global variable xhr before trying to define it as a new
instance of an XMLHttpRequest object. We do this using the try and
catch syntax, which is a way of achieving error-handling. In comparison
to modern languages, C is somewhat tedious in not having this kind of
error-handling mechanism. Consider copy.c which was forced to check
the return value of almost every function that was called. The try and
catch syntax allows you to sandwich together several lines of code and to
deal with any number of different exceptions or errors that result.

• What’s the deal with two different assignments to xhr? Microsoft, liking
to be different, has its own version of the XMLHttpRequest object called
ActiveXObject. We’re kind of abusing the try and catch syntax here,
but effectively we’re saying “If instantiating an XMLHttpRequest object
fails, assume the user has a Microsoft browser and try to instantiate an

7

Computer Science 50
Fall 2008
Scribe Notes

Week 9 Wednesday: November 19, 2008
Andrew Sellergren, Anjuli Kannan

ActiveXObject instead.”

• The NULL check for xhr is in place to ensure that if both attempts to
instantiate fail, an appropriate error message will be displayed.

• JavaScript, like PHP, doesn’t have strict data typing, so we can simply de-
clare a var to hold our URL. To construct our URL, we use the + sign to
concatenate whatever the user inputted into the symbol form (which we re-
trieve by calling getElementById()) onto the string quote1.php?symbol=.

• One advantage of JavaScript over C is asynchronicity. When we make
a function call in C, we have to wait for it to return before executing
the next line of code (unless we implement threading). With JavaScript,
however, we can call a function and have it return immediately, calling
another function as soon as it returns. Take a look at these lines:

xhr.onreadystatechange = handler;
xhr.open("GET", url, true);
xhr.send(null);

What we’re doing here is telling the operating environment to call the
handler() function whenever it’s ready to change its state. Then we’re
telling it to send the GET request in an asychronous fashion (using true
as the third argument to the open() method). What does handler() do?
Notice it makes a call to the alert() method (which accomplishes the pop-
up) only if the readyState property is equal to 4 (which means that the
page is loaded) and the overall status is 200 (meaning OK). The argument
to alert() is the responseText property of the XMLHttpRequest object,
which, in this case, is the stock price. w00t.

• What about quote1.php? Take a look at its code:

<?php

/**
* quote1.php
*
* Outputs price of given symbol as text/html.
*
* Computer Science 50
* David J. Malan
*/

// get quote
$handle = @fopen("http://download.finance.yahoo.com/d/

quotes.csv?s={$_GET[’symbol’]}&f=e1l1", "r");
if ($handle !== FALSE)

8

Computer Science 50
Fall 2008
Scribe Notes

Week 9 Wednesday: November 19, 2008
Andrew Sellergren, Anjuli Kannan

{
$data = fgetcsv($handle);
if ($data !== FALSE && $data[0] == "N/A")

print($data[1]);
fclose($handle);

}
?>

Here we’re calling fopen(), which in PHP allows you to open URLs like
files and start reading from them. If this call returns true, then we make
a call to fgetcsv(). CSV stands for Comma-separated Values, a very
simple way of representing data, separating fields by commas in a flat text
file. This type of file can actually be opened by Microsoft Excel such that
all the fields will be nicely separated into columns. What Yahoo is doing is
distributing their quote data in CSV form so that it can be easily parsed.

• If we access quote1.php?symbol=msft directly from our browser, we get
the stock price printed directly to our browser window. However, be-
cause we’re normally making an HTTP request for this page from within
ajax1.html, this value won’t be printed to our browser window but rather
incorporated into an JavaScript alert pop-up thanks to our AJAX call.

4 More Fun with AJAX (48:00–57:00)

• No one likes pop-ups, so how can we achieve this content update in a
more elegant fashion? Take a look at ajax2.html where it differs from
ajax1.html:

document.getElementById("price").innerHTML = xhr.responseText;

Notice this change to the line in handler(). Instead of printing the
responseText property to a JavaScript pop-up, we’re going to write it
to a DOM element with id="price". We’ve implemented this element as
a span rather than a div simply because div’s include a linebreak: we
want our stock price to be displayed in-line. Note that every XHTML
element has an innerHTML property which refers to any HTML embedded
between the open and close tags of that element.

• What’s new with ajax3.html? So far, we haven’t had the best interface
because calls to the server might be pretty slow, in which case the user
might worry that nothing is happening. It might be nice to implement
some kind of animation to let the user know that the page is still working,
albeit slowly. We achieve this by creating a new div that contains a simple
GIF progress bar animation which we display as long as the readyState
property of the XMLHttpRequest object is not yet 4.

• We’re also returning more data from the server, which we access in the
$data array at indices 1, 2, and 3.

9

http://cs50.net/lectures/weeks/9/src/ajax/quote1.php?symbol=msft

Computer Science 50
Fall 2008
Scribe Notes

Week 9 Wednesday: November 19, 2008
Andrew Sellergren, Anjuli Kannan

• One syntactic detail: we check $handle !== FALSE which invokes the
identical operator. This operator verifies that a variable is not only equal
to a given value but it also has the same type.

5 The Real World (57:00–67:00)

• One of the things you’ll be using for Problem Set 8 is Google Maps’ API.
In the real world, you’ll most likely not be writing C, but rather some
higher-level language like PHP—and you’ll most likely be starting not
from scratch but rather from some kind of API.

• While it’s true that you pay a performance penalty for writing code in
higher-level interpreted languages like PHP, you ultimately might not lose
much time given relatively high processor speeds and multiple cores.

• One of the exercises of Problem Set 8 will be to parse a very large dataset
in CSV format in order to insert it into a database. This is a very nitty-
gritty exercise that mimics everyday tasks in computer science. David, for
example, gets data from the registrar every year in CSV format and it’s up
to him to reformat it so he can insert it in CS 50’s database. The quick-
and-dirty scripts he writes are meant to save him time, not necessarily
to be the fastest implementation possible. Keep in mind that the time it
takes to actually write the code needs to be factored in when considering
the “efficiency” of the program!

• One of the biggest design decisions you’ll make in programming is the very
first: what language should I use?

• If we go to the Google Maps Demos, you can see various mash-ups that
people have created; for example, a Craigslist functionality that displays
all the apartments for rent in a given vicinity.

• What does it take to use Google Maps in our your own website? You sign
up for a Google account and receive a developer’s key which is embedded
in your website so they can keep track of where their code is being used.
Then there’s nothing to do but start incorporating the basics of their code
into your website. One of the goals of introducing JavaScript this week
was so that you wouldn’t be lost or overwhelmed as you begin to use
Google Maps’ API Reference.

• If we take a look at the Shuttleboy source code,5 we see that the array
points[] gets initialized with all the coordinates of the shuttle stops in
latitude and longitude using Google’s object GLatLong.

• Note that it only took one line of code to actually embed the Google Map
in the website:

5Jeez, talk about self-promotion.

10

http://code.google.com/apis/maps/documentation/demogallery.html
http://code.google.com/apis/maps/documentation/reference.html

Computer Science 50
Fall 2008
Scribe Notes

Week 9 Wednesday: November 19, 2008
Andrew Sellergren, Anjuli Kannan

<body color="#c0c0c0" onload="initialize()"
onunload="GUnload()">

What are these functions? These functions are the ones that David wrote
himself. initialize() begins with a sanity check to make sure the
browser is compatible with Google Maps. Then, it checks that there is
a div with id="map" and returns if there isn’t. Obviously, if there’s no
placeholder for the map, then we don’t want to continue with our program!

• The code then proceeds through various instantiations which are detailed
in the documentation. For each of the shuttle stops, for example, the
appearance of the icon is specified and then the method addOverlay is
called to add them to the map. Simple as that!

6 And Now For Something Completely Different (67:00–76:00)

• Check out this video about the workings of the internet.

• Take your own notes for once! Sheesh, I quit.6

6David, if you’re reading this, know that what I meant to say is: “I most humbly appreciate
my lowly role, O Webmaster.”

11

http://www.warriorsofthe.net/cgi-bin/download.pl/warriors-700-VBR?url=ftp://ftp.luth.se/pub/misc/www.warriorsofthe.net/warriors-700-VBR.mpg

	Announcements (0:00--3:00)
	SQL Injection Attacks (3:00--11:00)
	DOM and AJAX (11:00--48:00)
	More Fun with AJAX (48:00--57:00)
	The Real World (57:00--67:00)
	And Now For Something Completely Different (67:00--76:00)

