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Problem Set 3: The Game of Fifteen 
 

due by 7:00 P.M. on Friday, 17 October 2008 
 
 
 
Goals. 
 
• Introduce you to larger programs and programs with multiple source files. 
• Empower you with Makefiles and RCS. 
• Acquaint you with pseudorandom numbers. 
• Play (but call it work). 
 
 
Recommended Reading. 
 
• Section 17 of http://www.howstuffworks.com/c.htm. 
• Chapters 20 and 23 of Absolute Beginner’s Guide to C. 
• Chapters 13, 15, and 18 of Programming in C. 
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Academic Honesty. 
 
All work that you do toward fulfillment of this course’s expectations must be your own unless 
collaboration is explicitly allowed (e.g., by some problem set or the final project).  Viewing or copying 
another individual’s work (even if left by a printer, stored in an executable directory, or accidentally 
shared in the course’s virtual terminal room) or lifting material from a book, magazine, website, or other 
source—even in part—and presenting it as your own constitutes academic dishonesty, as does showing 
or giving your work, even in part, to another student.   
 
Similarly is dual submission academic dishonesty: you may not submit the same or similar work to this 
course that you have submitted or will submit to another.  Moreover, submission of any work that you 
intend to use outside of the course (e.g., for a job) must be approved by the staff.   
 
You are welcome to discuss the course’s material with others in order to better understand it.  You may 
even discuss problem sets with classmates, but you may not share code.  In other words, you may 
communicate with classmates in English, but you may not communicate in, say, C.  If in doubt as to the 
appropriateness of some discussion, contact the staff.   
 
You may even turn to the Web for instruction beyond the course’s lectures and sections, for references, 
and for solutions to technical difficulties, but not for outright solutions to problems on problem sets or 
your own final project.  However, failure to cite (as with comments) the origin of any code or technique 
that you do discover outside of the course’s lectures and sections (even while respecting these 
constraints) and then integrate into your own work may be considered academic dishonesty. 
 
All forms of academic dishonesty are dealt with harshly.   
 
 
Grades. 
 
Your work on this problem set will be evaluated along three primary axes. 
 
Correctness.  To what extent is your code consistent with our specifications and free of bugs? 
Design.  To what extent is your code written well (i.e., clearly, efficiently, elegantly, and/or logically)? 
Style.  To what extent is your code readable (i.e., commented and indented with variables aptly named)? 
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Getting Started. 
 
0. For perhaps the last time, we’re again going to have you code on nice.fas.harvard.edu for 

this problem set.1  SSH to nice.fas.harvard.edu and execute the command below. 
 
 cp -r ~cs50/pub/distributions/pset3/ ~/cs50/ 
 
 That command will copy the staff’s pset3/ directory, inside of which is some “distribution code,” 

files (and subdirectories) that you’ll need for this problem set, into your own ~/cs50/ directory.  
The -r switch triggers a “recursive” copy.  Navigate your way to your copy by executing the 
command below. 

 
 cd ~/cs50/pset3/ 
 
 If you list the contents of your current working directory (remember how?), you should see the 

below.  If you don’t, don’t hesitate to ask the staff for assistance. 
 
 fifteen/  find/  questions.txt 
 
 As this output implies, most of your work for this problem set will be organized within two 

subdirectories. 
 
1. Don’t forget that the course’s website has a bulletin board!  Not only can you post questions of 

your own, you can also search for or browse answers to questions already asked by others.  And 
never fear asking “dumb questions.”  Students’ posts to the course’s bulletin board are 
anonymized.  Only the staff, not fellow students, will know who you are!2 

 
2. Speaking of questions, head on over to 
 
 http://cs50.net/surveys/psets/3/ 

 
 for some quick ones from us! 
 
 

                                                            
1 Note that the Hacker Edition of this problem set has students instead SSH to hacker3.cs50.net, an updated prototype of 
our new cluster  “in the cloud.” 
2 Thus, only we will make fun.  0:-) 
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Find. 
 
3. Now let’s dive into the first of those subdirectories.  Execute the command below. 
 
 cd ~/cs50/pset3/find/ 

 
 If you list the contents of this directory, you should see the below. 
 
 helpers.c  helpers.h  Makefile  find.c  generate.c 

 
 Wow, that’s a lot of files, eh?  Not to worry, we’ll walk you through them. 
 
4. Implemented in generate.c is a “pseudorandom-number generator” (PRNG), a program that 

outputs a whole bunch of random numbers, one per line.  Actually, these numbers are generated 
not so much randomly as they are “pseudorandomly.”  Because a computer is a deterministic 
device (i.e., it can only do what it’s told to do), it can’t just pick a number off the top of its head.  
However, algorithms exist that enable a computer to generate sequences of numbers that appear 
to be random in the sense that there’s no obvious pattern to them.  C provides a function called 
rand() for exactly this purpose.  The language also provides a function called srand() that is 
used to “seed” the PRNG.  To “seed” a PRNG means to feed an initial value, s, to its generating 
algorithm, g.  Typically, the first number returned by a PRNG is g(s); the second is g(g(s)); the third 
is g(g(g(s))); and so forth.  Hence, you can generate the same sequence of “random numbers” 
simply by seeding the PRNG with the same initial value.  The current time, often measured in 
seconds since some particular moment in the past, is typically used as the seed to a PRNG so that 
the seed is not hard-coded into a program but instead dynamic. 

 
 Anyhow, go ahead and compile this program by executing the command below. 
 
 gcc –ggdb -std=c99 -Wall -o generate generate.c 

 
 Wow, that’s quite the command, eh?  It turns out you’ve been executing commands like that one 

all along.  Prior to this problem set, anytime you typed 
 
 gcc 

 
 it was as though you were typing 
 
 gcc –ggdb -std=c99 -Wall  

 
 because we had “aliased” the former command to the latter to save you keystrokes and avoid 

confusion.  (Remember cs50setup?  That’s one of the things it did for you.)  If curious, the  
-ggdb switch tells gcc to include “debugging symbols” in your binaries to facilitate debugging with 
GDB.  The -std=cs99 switch tells GCC that your code might include C99 syntax.  And the -Wall 
switch tells GCC to report all possible warnings anytime it detects possible problems with your 
code. 
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 It’s time for some training wheels to come off, though!  We’ve thus deactivated that alias.  But we 
don’t expect you to start typing ridiculously long commands.  We’ll just start using make even 
more.  For now, though, go ahead and run the program you just compiled by executing the 
command below. 

 
 generate 

 
 You should be informed of the program’s proper usage, per the below. 
 
 Usage: generate n [s] 

 
 As this output suggests, this program expects one or two command-line arguments.  The first, n, is 

required; it indicates how many pseudorandom numbers you’d like the generate.  The second, s, 
is optional, as implied by the brackets; if supplied, it represents the value that the pseudorandom-
number generator should use as its seed.  Go ahead and run this program again, this time with a 
value of, say, 10 for n, as in the below; you should see a list of 10 pseudorandom numbers.   

 
 generate 10 

 
 Run the program a third time using that same value for n; you should see a different list of 10 

numbers.  Now try running the program twice more, still using that same value for n, but this time 
also providing some value for s both times, as in the below; the output of both executions should 
be identical. 

 
 generate 10 0 

  
 Think of this last command, with its seed of 0, as having generated the PRNG’s 0th possible 

sequence of 10 pseudorandom numbers. 
 
5. Now take a look at generate.c itself with Nano.  (Remember how?)  Comments atop that file 

explain the program’s overall functionality.  But it looks like we forgot to comment the code itself.  
Read over the code carefully until you understand each line and then comment our code for us, 
replacing each TODO with a phrase that describes the purpose or functionality of the 
corresponding line(s) of code.  Realize that a comment flanked with /* and */ can span lines 
whereas a comment preceded by // can only extend to the end of a line; the latter, recall, is a 
feature of C99.  If curious about rand and srand, pull up the URLs below. 

 
 http://cs50.net/resources/cppreference.com/stdother/rand.html 
 http://cs50.net/resources/cppreference.com/stdother/srand.html 

 
 Or execute the commands below. 
 
 man 3 rand 
 man 3 srand 
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 Note that if you instead execute the command below, you’ll pull up the man page for a program 
(not function) named rand in section 1 of the Linux Programmer’s Manual. 

 
 man rand 

 
 Functions, by contrast, tend to be documented in sections 2 and 3.  To avoid any ambiguity, then, 

you sometimes need to tell man the section you want.  If curious as to what’s where, execute, 
believe it or not, the command below. 

 
 man man 

 
 Once done commenting generate.c, re-compile the program to be sure you didn’t break 

anything.  Rather than execute that long command from earlier, though, simply execute the 
command below. 

 
 make generate 

  
 As you may recall from Problem Set 1, make automates compilation of your code.  Notice, in fact, 

how make just executed a pretty long command for you, per the tool’s output.  However, as your 
programs grow in size, make can’t do absolutely everything for you; you’ll need to start telling 
make how to compile your program, particularly when they involve multiple source (i.e., .c) files.  
And so we’ll start relying on “Makefiles,” configuration files that tell make exactly what to do. 

 How did make know how to compile generate in this case?  Using Nano, go ahead and look at 
the file called Makefile that’s in the same directory as generate.c.  This Makefile is 
essentially a list of rules that we wrote for you that tells make how to build generate from 
generate.c for you.  The relevant lines appear below. 

 
 generate: generate.c 
     gcc -ggdb -std=c99 -Wall -o generate generate.c 

 
 The first line tells make that the “target” called generate should be built by invoking the second 

line’s command.  Moreover, that first line tells make that generate is dependent on 
generate.c, the implication of which is that make will only re-build generate on subsequent 
runs if that file was modified since make last built generate.  Neat time-saving trick, eh?  In fact, 
go ahead and execute the command below again, assuming you haven’t modified generate.c. 

 
 make generate 

  
 You should be informed that generate is already up to date.  Incidentally, know that the leading 

whitespace on that second line is not a sequence of spaces but, rather, a tab.  Unfortunately, 
make requires that commands be preceded by tabs, so be careful not to change them to spaces 
with Nano, else you may encounter strange errors! 
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6. Now take a look at find.c with Nano.  Notice that this program expects a single command-line 
argument: a “needle” to search for in a “haystack” of values.  Once done looking over the code, go 
ahead and compile the program by executing the command below. 

 
 make find 

  
 Notice, per that command’s output, that Make actually executed the below for you. 
 
 gcc -ggdb -std=c99 -Wall -o find helpers.c find.c -lcs50 

 
 Notice further that you just compiled a program comprising not one but two .c files: helpers.c 

and find.c.  How did make know what to do?  Well, again, open up Makefile to see the man 
behind the curtain.  The relevant lines appear below. 

 
 find: helpers.c helpers.h find.c 
     gcc -ggdb -std=c99 -Wall -o find helpers.c find.c -lcs50 

 
 Per the dependencies implied above (after the colon), any changes to helpers.c, helpers.h, or 

find.c will compel make to rebuild find the next time it’s invoked for this target. 
 
 Go ahead and run this program by executing, say, the below. 
 
 find 13 
 
 You’ll be prompted to provide some hay (i.e., some integers), one “straw” at a time.  As soon as 

you tire of providing integers, hit ctrl-d to send the program an EOF (end-of-file) character.  That 
character will compel GetInt from CS 50’s library to return INT_MAX, which, per find.c, will 
compel find to stop prompting for hay.  The program will then look for that needle in the hay you 
provided, ultimately reporting whether the former was found in the latter.  In short, this program 
searches an array for some value. 

 
 In turns out you can automate this process of providing hay, though, by “piping” the output of 

generate into find as input.  For instance, the command below passes 1,024 pseudorandom 
numbers to find, which then searches those values for 13. 

 
 generate 1024 | find 13 
 
 Alternatively, you can “redirect” generate’s output to a file with a command like the below. 
 
 generate 1024 > numbers.txt 
 
 You can then redirect that file’s contents as input to find with the command below. 
 
 find 13 < numbers.txt 

 
 Let’s finish looking at that Makefile.  Notice the line below. 
 
 all: generate find 
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 This target implies that you can build both generate and find simply by executing the below. 
 
 make all 

 
 Even better, the below is equivalent (because make builds a Makefile’s first target by default). 
 
 make 

 
 If only you could whittle this whole problem set down to a single command!  Finally, notice these 

last lines in Makefile: 
 
 clean: 
     rm -f *.o a.out core generate find 

  
 This target allows you to delete all files ending in .o or called a.out, core (tsk, tsk), generate, 

or find simply by executing the command below. 
 
 make clean 
 
 Be careful not to add, say, *.c to that last line in Makefile!  (Why?)  Any line, incidentally, that 

begins with # is just a comment. 
 
7. Phew, lots of good stuff so far, and it’s almost time to start coding.  But one last lesson for you.  

From personal (traumatic) experience, you probably already know that backups are a good thing.  
What you might not know is that a number of Linux tools exist to facilitate the process of backing 
up source code.  Starting with this problem set, you’ll want to use a utility called RCS (Revision 
Control System) to make regular, incremental backups of your source code.  Not only will RCS 
enable you to restore your most recently backed-up copy of a file in the event of trauma, it will 
also enable you to restore different versions of your source code, in the event you realize that the 
code you wrote a few days ago was much better than what you’ve been producing since. 

 
 Go ahead and “check in” (i.e., backup) your initial version of find.c by executing the command 

below. 
 
 ci find.c 
 
 You’ll be prompted for a description for this file.  Go ahead and describe the purpose of this file in 

a few words, then enter . or hit ctrl-d on a line of its own to save the description.  You should be 
informed that version 1.1 of this file, your “initial revision,” has been checked in.  If you list the 
contents of your current working directory, you’ll notice that you now have a directory called RCS 
therein, inside of which is find.c,v, which is where RCS (i.e., ci) records changes to your file. 

 
 Henceforth, anytime you want to check in your latest version of find.c, simply execute the same 

command as before, per the below. 
 
 ci find.c 
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 No longer will you be prompted for a description but, rather, a “log message,” which is even more 
important than the file’s initial description.  Log messages are supposed to help you remember 
what’s different between this version and your last (e.g., “I changed my while loop to a  
do-while loop”).  Entering that message might be tedious, but, trust us, you’re not going to 
remember what was special about version 1.9 at 3:00 A.M. without a little help.  As before,  
enter . or hit ctrl-d on a line of its own to save your message.  Each time you check in a newer 
version of your file, RCS will assign an appropriate version number.  

 
 Suppose, for future reference, that you want to restore, say, version 1.1 of find.c.  If you don’t 

want to clobber (i.e., overwrite) your current version, be sure to check it in first!  Then proceed to 
execute the command below. 

 
 co –r1.1 find.c 

 
 You should find that version 1.1 of find.c has been restored to your current working directory.  So 

that you know which version of find.c is which, execute the command below to see your own 
log messages. 

 
 rlog find.c 

 
 To save time, know that you can check in multiple files at once, as with the command below. 
 
 ci *.c *.h 
 
 For disk space’s sake, RCS will allow you to check in source files on nice.fas.harvard.edu but 

not binaries. 
 
8. And now the fun begins!  Notice that find.c calls sort, a function declared in helpers.h.  

Unfortunately, we forgot to implement that function fully in helpers.c!  Take a peek at 
helpers.c with Nano, and you’ll see that sort returns immediately, even though find’s main 
function does pass it an actual array.  To be sure, we could have put the contents of helpers.h 
and helpers.c in find.c itself.  But it’s sometimes better to organize programs into multiple 
files, especially when some functions (e.g., sort) are essentially utility functions that might later 
prove useful to other programs as well, much like those in CS 50’s own library. 

 
 Incidentally, recall the syntax for declaring an array.  Not only do you specify the array’s type, you 

also specify its size between brackets, just as we do for haystack in find.c: 
 
 int haystack[HAY_MAX]; 

 
 But when passing an array, you only specify its name, just as we do when passing haystack to 

sort in find.c: 
 
 sort(haystack, size); 

 
 (Why do we also pass in the size of that array separately?) 
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 When declaring a function that takes a one-dimensional array as an argument, though, you don’t 
need to specify the array’s size, just as we don’t when declaring sort in helpers.h (and 
helpers.c): 

 
 void sort(int values[], int n); 

 
 Go ahead and implement sort using any algorithm that’s in O(n2) so that the function actually 

sorts, from smallest to largest, any array of integers that it’s passed.3  You may not alter the 
function’s declaration.  In particular, its return type must remain void.  Rather than return a new, 
sorted array, then, the function must instead “destructively” sort the actual array that it’s passed. 

 
 Don’t forget to check in helpers.c before making your changes!  (Remember how?) 
 
 We leave it to you to determine how to test your implementation of sort.  But don’t forget that 

printf and, now, gdb are your friends.  And don’t forget that you can generate the same 
sequence of pseudorandom numbers again and again by explicitly specifying generate’s seed.  
Before you ultimately submit, though, be sure to remove any such calls to printf, as we like our 
programs’ outputs just they way they are! 

 
 Incidentally, check out Resources on the course’s website for a great little quick-reference guide 

for gdb! 
 
 If you’d like to play with the staff’s own implementation of find on nice.fas.harvard.edu, 

you may execute the below. 
 
 ~cs50/pub/solutions/pset3/find 

 
9. Bulletin board! 
 
10. Now that sort (presumably) works, you can improve upon search.  Notice that our version 

implements linear search.  Rip out those lines that we’ve written and re-implement search as 
binary search! 

 
11. Despite your enhancements to sort and search, you may find that your version of find, once built 

with your changes, is now slower than ours.  But why?  Explain in a sentence or more in 
pset3/questions.txt why your “new and improved” code is slower than ours.  In another 
sentence or more, explain why one might ever want to bother sorting then searching with binary 
search. 

 

                                                            
3 You’re welcome to turn to Chapter 23 of Absolutely Beginner’s Guide to C for guidance, but we suggest that you instead allow 
yourself only Week 3’s pseudocode. 
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The Game Begins. 
 
12. And now it’s time to play.  The Game of Fifteen is a puzzle played on a square, two-dimensional 

board with numbered tiles that slide.  The goal of this puzzle is to arrange the board’s tiles from 
smallest to largest, left to right, top to bottom, with an empty space in board’s bottom-right 
corner, as in the below.4 

 

 
 
 Sliding any tile that borders the board’s empty space into that constitutes a “move.”  Although the 

configuration above depicts a game already won, notice how the tile numbered 12 or the tile 
numbered 15 could be slid into the empty space.  Tiles may not be moved diagonally, though, or 
forcibly removed from the board.   

 
 Although other configurations are possible, we shall assume that this game begins with the 

board’s tiles in reverse order, from largest to smallest, left to right, top to bottom, with an empty 
space in the board’s bottom-right corner.  If, however, and only if the board contains an odd 
number of tiles (i.e., the height and width of the board are even), the positions of tiles numbered 
1 and 2 must be swapped, as in the below.5  The puzzle is solvable from this configuration. 

 

 
 
13. Navigate your way to ~/cs50/pset3/fifteen/, and take a look at fifteen.c with Nano.  

Within this file is the entire framework for The Game of Fifteen (and variants thereof).  The 
challenge ultimately at hand is to complete this game’s implementation. 

 

                                                            
4 Figure from http://en.wikipedia.org/wiki/Fifteen_puzzle. 
5 Figure adapted from http://en.wikipedia.org/wiki/Fifteen_puzzle. 
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 But first check in fifteen.c!  (Remember how?)  Then go ahead and compile the framework.  
(Can you figure out how?)  And, even though it’s not yet finished, go ahead and run the game.  
(Can you figure out how?) 

 
 Phew.  It appears that the game is at least partly functional.  Granted, it’s not much of a game yet.  

But that’s where you come in. 
 
 Read over the code and comments in fifteen.c and then answer the questions below in 

pset3/questions.txt. 
 

i. Besides 4 × 4 (which are The Game of Fifteen’s dimensions), what other dimensions does 
the framework allow? 

ii. With what sort of data structure is the game’s board represented? 
iii. What function is called to greet the player at game’s start? 
iv. What functions do you apparently need to implement? 
v. Have you actually played and won The Game of Fifteen in real life? 

 
14. Alright, get to it, implement this game.  Remember, take “baby steps.”  Don’t try to bite off the 

entire game at once.  Instead, implement one function at a time and be sure that it works before 
forging ahead.  In particular, we suggest that you implement the framework’s functions in this 
order: init, draw, move, won.  Any design decisions not explicitly prescribed herein (e.g., how 
much space you should leave between numbers when printing the board) are intentionally left to 
you.  Presumably the board, when printed, should look something like the below, but we leave it 
to you to implement your own vision. 

 
15 14 13 12 
 
11 10  9  8 
 
 7  6  5  4 
 
 3  1  2    

 
 To test your implementation, you can certainly try playing it.  (Know that you can force your 

program to quit by hitting ctrl-c.)  Be sure that you (and we) cannot crash your program, as by 
providing bogus tile numbers.  And know that, much like you automated input into find, so can 
you automate execution of this game.  In fact, in ~cs50/pub/tests/pset3/ are 3x3.txt and 
4x4.txt, winning sequences of moves for a 3 × 3 board and a 4 × 4 board, respectively.  To test 
your program with, say, the first of those inputs, execute the below. 

 
 fifteen 3 < ~cs50/pub/tests/pset3/3x3.txt 
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 Feel free to tweak the appropriate argument to usleep to speed up the animation.  In fact, you’re 
welcome to alter the aesthetics of the game.  For (optional) fun with “ANSI escape sequences,” 
including color, take a look at our implementation of clear and check out the URL below for more 
tricks. 

 
 http://isthe.com/chongo/tech/comp/ansi_escapes.html 

  
 But we ask that you not alter the flow of logic in main so that we can automate some tests of your 

program once submitted.  In particular, main must only returns 0 if and when the user has 
actually won the game; non-zero values should be returned in any cases of error, as implied by our 
distribution code.  If in doubt as to whether some design decision of yours might run counter to 
the staff’s wishes, simply contact your teaching fellow. 

 
 If you’d like to play with the staff’s own implementation of fifteen on 

nice.fas.harvard.edu, you may execute the below. 
 
 ~cs50/pub/solutions/pset3/fifteen 

 
 If you’d like to see an even fancier version, one so good that it can play itself, try out our solution 

to the Hacker Edition by executing the below. 
 
 ~cs50/pub/solutions/hacker3/fifteen 

 
 Instead of typing a number at the game’s prompt, type GOD instead.  Neat, eh?6 
 
15. Bulletin board!! 
 
 
Submitting Your Work. 
 
16. Ensure that your work is in ~/cs50/pset3/.  Submit your work by executing the command 

below. 
 
 cs50submit pset3 

 
 Thereafter, follow any on-screen instructions until you receive visual confirmation of your work’s 

successful submission.  You will also receive a “receipt” via email to your FAS account, which you 
should retain until term’s end.  You may re-submit as many times as you’d like; each resubmission 
will overwrite any previous submission.  But take care not to re-submit after the problem set’s 
deadline, as only your latest submission’s timestamp is retained. 

                                                            
6 To be clear, implementation of God Mode is part of this problem set’s Hacker Edition.  You don’t need to 
implement God Mode for this standard edition!  But it’s still pretty neat, eh? 


