
Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2008

0 < 12

Problem Set 6: Mispellings1

due by 7:00 P.M. on Friday, 14 November 2008

Goals.

• Allow you to design and implement your own data structure(s).
• Optimize your code’s (real-world) running time.
• Challenge THE BIG BOARD.

Recommended Reading.

• Sections 18 – 20, 27 – 30, 33, 36, and 37 of http://www.howstuffworks.com/c.htm.
• Chapter 26 of Absolute Beginner’s Guide to C.
• Chapter 17 of Programming in C.

image from http://img.dailymail.co.uk/i/pix/2007/09_01/misspelledAP0609_468x311.jpg

1 Yes, you’re very sharp. But we know. It’s meant to be ironic. Or something. We do go to the same shcool, you know.

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2008

1 < 12

Academic Honesty.

All work that you do toward fulfillment of this course’s expectations must be your own unless
collaboration is explicitly allowed (e.g., by some problem set or the final project). Viewing or copying
another individual’s work (even if left by a printer, stored in an executable directory, or accidentally
shared in the course’s virtual terminal room) or lifting material from a book, magazine, website, or other
source—even in part—and presenting it as your own constitutes academic dishonesty, as does showing
or giving your work, even in part, to another student.

Similarly is dual submission academic dishonesty: you may not submit the same or similar work to this
course that you have submitted or will submit to another. Moreover, submission of any work that you
intend to use outside of the course (e.g., for a job) must be approved by the staff.

You are welcome to discuss the course’s material with others in order to better understand it. You may
even discuss problem sets with classmates, but you may not share code. In other words, you may
communicate with classmates in English, but you may not communicate in, say, C. If in doubt as to the
appropriateness of some discussion, contact the staff.

You may even turn to the Web for instruction beyond the course’s lectures and sections, for references,
and for solutions to technical difficulties, but not for outright solutions to problems on problem sets or
your own final project. However, failure to cite (as with comments) the origin of any code or technique
that you do discover outside of the course’s lectures and sections (even while respecting these
constraints) and then integrate into your own work may be considered academic dishonesty.

All forms of academic dishonesty are dealt with harshly.

Grades.

Your work on this problem set will be evaluated along three primary axes.

Correctness. To what extent is your code consistent with our specifications and free of bugs?
Design. To what extent is your code written well (i.e., clearly, efficiently, elegantly, and/or logically)?
Style. To what extent is your code readable (i.e., commented and indented with variables aptly named)?

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2008

2 < 12

Getting Started.

 Check!

 SSH to cloud.cs50.net and execute the command below.

 cp -a ~cs50/pub/distributions/pset6/ ~

 Now pull up the man page for cp. Notice that this -a switch is defined as follows.

 -a, --archive
 same as -cdpPR

 Those lines mean that running cp with -a (or --archive) is the same as running cp with -cdpPR

(or, equivalently, -c -d -p -P -R). The last of those switches (-R) should be familiar, as it’s
equivalent to -r, which you’ve used in past problem sets to copy directories recursively. The
second-to-last (-P) is probably new to you. Per cp’s man page, this switch means “never follow
symbolic links.” A symbolic (also known as a symlink or soft link) is a special kind of file that pretty
much just contains the path to another file. In fact, let’s take a look at what you just copied.
Navigate your way to ~/pset6/ and type the (familiar) command below.

 ls

 You should see the below.

 Makefile dictionary.c dictionary.h questions.txt speller.c texts@

 Notice that texts has a trailing @. Now execute the (also familar) command below.

 ls -l

 You should see output like the below.

-rw-r--r-- 1 cs50 cs50 533 Nov 7 19:00 Makefile
-rw-r--r-- 1 cs50 cs50 971 Nov 7 19:00 dictionary.c
-rw-r--r-- 1 cs50 cs50 884 Nov 7 19:00 dictionary.h
-rw-r--r-- 1 cs50 cs50 0 Nov 7 19:00 questions.txt
-r--r--r-- 1 cs50 cs50 5310 Nov 7 19:00 speller.c
lrwxrwxrwx 1 cs50 cs50 32 Nov 7 19:00 texts -> /home/cs50/pub/share/pset6/texts/

 As you might have guessed, texts is a symbolic link. From the looks of the above, it looks like

texts leads to an actual directory called texts in /home/cs50/pub/share/pset6/. Let’s
take a look. Go ahead and execute the below.

 cd texts/

 Now execute the below.

 pwd

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2008

3 < 12

 Recall that pwd reports your current working directory. Seems you’re now in
/home/cs50/pub/share/pset6/texts/, even though your prompt (parenthetically) says
otherwise! Neat, eh?2 Of course, executing the below won’t bring you back to the directory you
were just in (i.e., ~/pset6/), as it normally does.

 cd ..

 Rather, you should find yourself in /home/cs50/pub/share/pset6/. That is, after all, the true

parent of /home/cs50/pub/share/pset6/texts/. So, to get back to your own ~/pset6/
directory, go ahead and execute the below.

 cd ~/pset6/

 Why all this talk about symlinks? Well, rather than waste space by giving each of you your own

copy of texts (inside of which is a whole bunch of read-only files), we decided to put one copy in
the cloud but make it easy for you to get at. In other words, because you have a symlink to
/home/cs50/pub/share/pset6/texts/ in your ~/pset6/ directory, you’ll be able to access
files therein by way of a much shorter relative path. In fact, let’s bring this point home. Assuming
you’re in ~/pset6/, go ahead and execute the below.3

 ls texts/

 You should see a whole bunch of (fun) files, as though texts were, in fact, a normal directory

inside your ~/pset6/ directory. Even though it’s not!

 So, why was -a (and, in turn, -P) useful with cp? Well, that flag ensured that the symlink to

/home/cs50/pub/share/pset6/texts/ was not “followed” but instead copied as a symlink,
else you’d end up with your own copy of that directory (since that’s where you end up by
following the symlink). As for those other flags to cp (-c, -d, and -p), well, man is your friend if
you’re curious as to what they do!

 Want to procrastinate (and practice “following” a symlink)? Try out the command below from

within ~/pset6/.4

 more texts/austinpowers.txt

 Yeah, baby, yeah!

 Gentlemen, are we all here? Good. As you know, my plot to high-jack nuclear weapons and hold
the world hostage has failed. Again. This organization will not tolerate failure. Mustafa...
Frau Farbissina... I spared your lives because I need you to help me rid the world of the only man
who can stop me now. We must go to London. I've set a trap for Austin Powers!5

2 Remember Chutes and Ladders? This is exactly like that. But not really.
3 Be sure to include that trailing slash (else you’ll just be reminded that texts is a symlink)!
4 Hit q to quit out of more!
5 Ha, made you procrastinate.

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2008

4 < 12

Alotta Mispellings.

 Theoretically, on input of size n, an algorithm with a running time of n is asymptotically equivalent,
in terms of O, to an algorithm with a running time of 2n. In the real world, though, the fact of the
matter is that the latter feels twice as slow as the former.

 The challenge ahead of you is to implement the fastest spell-checker you can! By “fastest,”

though, we’re talking actual, real-world, noticeable seconds—none of that asymptotic stuff this
time.

 In speller.c, we’ve put together a program that’s designed to spell-check a file after loading a

143,091-word dictionary from disk into memory. Unfortunately, we didn’t quite get around to
implementing the loading part. Or the checking part. Both (and more) we leave to you!

 Before we walk you through speller.c, go ahead and open up dictionary.h with Nano.

Declared in that file are four functions; take note of what each should do. Now open up
dictionary.c. Notice that we’ve implemented those four functions, but only barely, just
enough for this code to compile. Your job for this problem set is to re-implement those functions
as cleverly as possible so that this spell-checker works as advertised. And fast!

 Let’s get you started.

 Open up speller.c with Nano and spend some time looking over the code and comments
therein. You won’t need to change anything in this file, but you should understand it nonetheless.
Notice how, by way of getrusage, we’ll be “benchmarking” (i.e., timing the execution of) your
implementations of check, load, size, and unload. Also notice how we go about passing
check, word by word, the contents of some file to be spell-checked. Ultimately, we report each
misspelling in that file along with a bunch of statistics.

 Notice, incidentally, that we have defined the usage of speller to be

 speller [dict] file

 where dict is assumed to be a file containing a list of lowercase words, one per line, and file is

a file to be spell-checked. As the brackets suggest, provision of dict is optional; if this argument
is omitted, speller will use /home/cs50/pub/share/pset6/dict/words by default for its
dictionary. Within that file are those 143,091 words that you must ultimately load into memory.
In fact, take a peek at that file with Nano (or more or less) to get a sense of its structure and size.
Notice that every word in that file appears in lowercase (even, for simplicity, proper nouns and
acronyms). From top to bottom, the file is sorted lexicographically, with only one word per line
(each of which ends with \n). No word is longer than 45 characters, and no word appears more
than once. During development, you may find it helpful to provide speller with a dict of your
own that contains far fewer words, lest you struggle to debug an otherwise enormous structure in
memory.

 Don’t move on until you’re sure you understand how speller itself works!

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2008

5 < 12

 Odds are, you didn’t spend enough time looking over speller.c. Go back one square and walk
yourself through it again!

 Okay, technically that last problem induced an infinite loop. But we’ll assume you broke out of it.

In questions.txt, answer each of the following questions in one or more sentences.

0. What is pneumonoultramicroscopicsilicovolcanoconiosis?
1. According to its man page, what does getrusage do?
2. Per that same man page, how many members are in a variable of type struct rusage?
3. Why do you think we pass before and after by reference (instead of by value)

to calculate, even though we’re not changing their contents?
4. Explain as precisely as possible, in a paragraph or more, how main goes about reading

words from a file. In other words, convince us that you indeed understand how that
function’s for loop works.

5. Why do you think we used fgetc to read each word’s characters one at a time rather than
use fscanf with a format string like "%s" to read whole words at a time? Put another way,
what problems might arise by relying on fscanf alone?

 Now take a look at Makefile. Notice that we’ve employed some new tricks. Rather than hard-

code specifics in targets, we’ve instead defined variables (not in the C sense but in a Makefile
sense). The line below defines a variable called CC that specifies that make should use GCC for
compiling.

 CC = gcc

 The line below defines a variable called CFLAGS that specifies, in turn, that GCC should use some

familiar flags.

 CFLAGS = -ggdb -std=c99 –Werror

 The line below defines a variable called EXE, the value of which will be our program’s name.

 EXE = speller

 The line below defines a variable called HDRS, the value of which is a space-separated list of

header files used by speller.

 HDRS = dictionary.h

 The line below defines a variable called SRCS, the value of which is a space-separated list of C files

that will collectively implement speller.

 SRCS = speller.c dictionary.c

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2008

6 < 12

 The line below defines a variable called OBJS, the value of which is identical to that of SRCS,
except that each file’s extension is not .c but .o.

 OBJS = $(SRCS:.c=.o)

 The lines below define a default target using these variables.

 $(EXE): $(OBJS)
 $(CC) $(CFLAGS) -o $@ $(OBJS)

 The line below specifies that our .o files all “depend on” dictionary.h so that changes to the

latter induce recompilation of the former when you run make.

 $(OBJS): $(HDRS)

 Finally, the lines below define a target for cleaning up this problem set’s directory.

 clean:
 rm -f core $(EXE) *.o

 Know that you’re welcome to modify this Makefile as you see fit. In fact, you should if you

create any .c or .h files of your own.

 Even though this Makefile is fancier than past ones, compiling your code remains as easy as

executing the below.

 make

 But now you know how to make (pun intended) a more sophisticated Makefile!

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2008

7 < 12

 On to the most fun of these files! Notice that in ~/pset6/texts/, we have provided you with a
number of texts with which you’ll be able to test your speller. Among those files are the script
from Austin Powers: International Man of Mystery, a sound bite from Ralph Wiggum, three million
bytes from Tolstoy, some excerpts from Machiavelli and Shakespeare, the entirety of the King
James V Bible, and more. So that you know what to expect, take a peek at those files using cat,
less, or more. You can also use Nano, but be sure not to save any changes accidentally.

 Now, as you should know from having read over speller.c carefully, the output of speller, if

run on, say, austinpowers.txt, should resemble the below. For amusement’s sake, we’ve
excerpted some of our favorite “misspellings.” And lest we spoil the fun, we’ve omitted our own
statistics for now.

MISSPELLED WORDS

[...]
Bigglesworth
[...]
Fembots
[...]
Virtucon
[...]
friggin'
[...]
shagged
[...]
trippy
[...]

 WORDS MISSPELLED:
 WORDS IN DICTIONARY:
 WORDS IN FILE:
 TIME IN load:
 TIME IN check:
 TIME IN size:
 TIME IN unload:
 TIME IN TOTAL:

 TIME IN load represents the number of seconds that speller spends executing your

implementation of load. TIME IN check represents the number of seconds that speller
spends, in total, executing your implementation of check. TIME IN size represents the
number of seconds that speller spends executing your implementation of size.
TIME IN unload represents the number of seconds that speller spends executing your
implementation of unload. TIME IN TOTAL is the sum of those four measurements.

 Incidentally, to be clear, by “misspelled” we mean that some word is not in the dict provided.

“Fembots” might very well be in some other (swinging) dictionary.

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2008

8 < 12

 Alright, the challenge ahead of you is to implement load, check, size, and unload as efficiently
as possible, in such a way that TIME IN load, TIME IN check, TIME IN size, and
TIME IN unload are all minimized. To be sure, it’s not obvious what it even means to be
minimized, inasmuch as these benchmarks will certainly vary as you feed speller different
values for dict and for file. But therein lies the challenge, if not the fun, of this problem set.
This problem set is your chance to design. Although we invite you to minimize space, your
ultimate enemy is time. But before you dive in, some specifications from us.

i. You may not alter speller.c.
ii. You may alter dictionary.c (and, in fact, must in order to complete the implementations

of load, check, size, and unload), but you may not alter the declarations of load,
check, size, or unload.

iii. You may alter dictionary.h, but you may not alter the declarations of load, check,
size, or unload.

iv. You may alter Makefile.
v. You may add functions to dictionary.c or to files of your own creation so long as all of

your code compiles via make.
vi. Your implementation of check must be case-insensitive. In other words, if foo is in dict,

then check should return true given any capitalization thereof; none of foo, foO, fOo,
fOO, fOO, Foo, FoO, FOo, and FOO should be considered misspelled.

vii. Capitalization aside, your implementation of check should only return true for words
actually in dict. Beware hard-coding common words (e.g., the), lest we pass your
implementation a dict without those same words. Moreover, the only possessives allowed
are those actually in dict. In other words, even if foo is in dict, check should return
false given foo's if foo's is not also in dict.

viii. You may assume that check will only be passed strings with alphabetical characters and/or
apostrophes.

ix. You may assume that any dict passed to your program will be structured exactly like ours,
lexicographically sorted from top to bottom with one word per line (each of which ends
with \n). You may also assume that no word will be longer than LENGTH (a constant
defined in speller.c), characters, that no word will appear more than once, and that each
word will contain only lowercase alphabetical characters, apostrophes, and/or newlines.

x. Your spell-checker may only take file and, optionally, dict as input. Although you might
be inclined (particularly if among those more comfortable) to “pre-process” our default
dictionary in order to derive an “ideal hash function” for it, you may not save the output of
any such pre-processing to disk in order to load it back into memory on subsequent runs of
your spell-checker in order to gain an advantage.

Alright, ready to go?

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2008

9 < 12

 Implement load!

 Allow us to suggest that you whip up some dictionaries smaller than the 143,091-word default

with which to test your code during development.

 Implement check!

 Allow us to suggest that you whip up some small files to spell-check before trying out, oh,

War and Peace.

 Implement size!

 If you planned ahead, this one is easy!

 Implement unload!

 Be sure to free any memory that you allocated in load!

 In fact, be sure that your spell-checker doesn’t leak any memory at all. Remember that Valgrind is
your newest best friend. Know that Valgrind watches for leaks while your program is actually
running, so be sure to provide command-line arguments if you want Valgrind to analyze speller
while you use a particular dict and/or file, as in the below.

 valgrind -v --leak-check=full speller texts/austinpowers.txt

 If you run Valgrind without specifying a file for speller, your implementations of load and

unload won’t actually get called (and thus analyzed).

 Don’t forget about your other good buddy, GDB.

 And the course’s bulletin board, who wishes you wrote him more often.

 How to assess just how fast (and correct) your code is? Well, feel free to play with the staff’s
solution, as in the below.

 ~cs50/pub/solutions/pset6/speller texts/austinpowers.txt

 But also feel free to put your code to the test against your own classmates’! Execute the
command below to challenge THE BIG BOARD.

 bigboard

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2008

10 < 12

 We’ll benchmark your spell-checker with a variety of inputs. Assuming your output’s correct, you
can then surf on over to the course’s home page to see how your speller stacks up against
others’! Feel free to challenge THE BIG BOARD as often as you’d like; it will display your most
recent results.6

We shall honor those atop THE BIG BOARD.

 Realize that, for convenience, THE BIG BOARD includes links to lists of words considered

misspellings (with respect to our specifications and that 143,091-word dictionary) for each of the
texts in ~/pset6/texts/.

 By the way, you might want to turn off GCC’s -ggdb flag when challenging THE BIG BOARD. And

you might want to read up on GCC’s -O flags! (Remember how?)

 Those more comfortable might also find such tools as gprof and gcov of interest.

 Congrats! At this point, your speller-checker is presumably complete (and fast!), so it’s time for a
debriefing. In questions.txt, answer each of the following questions in a short paragraph.

6. Why do you think we declared so many parameters as being const in dictionary.c and

dictionary.h?
7. What data structure(s) did you use to implement your spell-checker? Be sure not to leave

your answer at just “hash table,” “trie,” or the like. Expound on what’s inside each of your
“nodes.”

8. How slow was your code the first time you got it working correctly?
9. What kinds of changes, if any, did you make to your code over the course of the week in

order to improve its performance?
10. Do you feel that your code has any bottlenecks that you were not able to chip away at?

6 Realize, incidentally, that your spell-checker’s performance might very well vary based on what others are doing on
cloud.cs50.net at the moment you challenge. That reality, however, is part of the challenge!

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2008

11 < 12

Submitting Your Work.

 Ensure that your work is in ~/pset6/. Submit your work by executing the command below.

 cs50submit pset6

 Thereafter, follow any on-screen instructions until you receive visual confirmation of your work’s

successful submission. You will no longer receive “receipts” via email; cs50submit’s own output
will confirm or deny your successful submission. You may re-submit as many times as you’d like;
each resubmission will overwrite any previous submission. But take care not to re-submit after
the problem set’s deadline, as only your latest submission’s timestamp is retained.

