
Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2008

0 < 18

Quiz 0
out of 61 points

Print your name on the line below.

Do not turn this page over until told by the staff to do so.

This quiz is “closed-book.” However, you may utilize during the quiz one two-sided
page (8.5" × 11") of notes, typed or written, and a pen or pencil, but nothing else.

Scrap paper is included at this document’s end.

Unless otherwise noted, assume that any code herein is in C.

Please circle your section leader’s name.

Aaron Oehlschlaeger

Alex Chang

Andrew Sellergren

Andy Lei
formerly Alex Hugon

Batool Ali

Brett Thomas

Chris Power

Chris Simmons

Daniel Carroll

Daniel Steinbrook

David Ramos

David Wu

Jesse Cohen

Josh Bolduc

Ken Parreno

Kent Rakip

Linfeng Yang

Mike Tucker

Patrick Quinn

Patrick Schmid

Peter Bailis

Peter Lifland

Sanjay Gandhi

Tom Wionzek

Tomo Lazovich

Vivek Sant

Will Phan

Yuhki Yamashita

Zeina Oweis

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2008

1 < 18

for staff use only

final score out of 61

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2008

2 < 18

Short Answers.

0. (0 points.) Just wanted you to start with a smile.1

1. (2 points.) Perform the following calculation in binary. Be show to show your work (i.e., any 1s

carried).

 10111111
+ 00000001

1 It’ll be your last.

for staff use only

 –

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2008

3 < 18

2. (3 points.) Consider the code below.2

 for (int i = 1; i <= 10; i++)
 {
 printf("%d, ah ah ah... ", i);
 sleep(1);
 }

 Although this code was meant to simulate counting from 1 to 10, pausing one second between

numbers, it instead appears to do nothing for ten seconds, after which it finally prints everything
all at once before quitting.

 In one or more sentences, explain why. Then explain, in one or more additional sentences (or

actual lines of code), how to fix the problem.

3. (4 points.) Suppose that the code below is someone’s attempt at writing a function that, given an

array of ints and the array’s size, is supposed to fill that array with ints from the user. Point
out and correct at least four (4) mistakes that the author has made.

 void
 foo(int array, int n)
 {
 for (i = 0; i <= n; i++)
 n = GetInt();
 array[i] = n;
 return n;
 }

 2 Think Sesame Street if that makes the problem more fun.

for staff use only

 –

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2008

4 < 18

4. (4 points.) Consider the code below.

 int a = 0;
 int b = -1;
 int c = b;
 c++;
 int *d = &b;
 int e = *d + 1;
 *d += 1;

 Complete the table below, specifying exactly what would be printed by each call to printf,

assuming printf is called after all of the lines above have been executed. We’ve plucked off the
first row in the table for you.

printf("%d", a); 0

printf("%d", b);

printf("%d", c);

printf("%d", *d);

printf("%d", e);

5. (2 points.) Consider the code below.

 char letters[26];
 for (int i = 0; i < 26; i++)
 letters[i] = 'A' + i;
 printf("%c", letters[24]);
 printf("%c", *(letters + 4));
 printf("S");

 What does this code print?

for staff use only

 –

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2008

5 < 18

strcrazy.

6. (6 points.) Below is an excerpt, somewhat simplified, from the man page for strncpy (and

strcpy).

SYNOPSIS
 #include <string.h>

 char *strcpy(char *dest, char *src);

 char *strncpy(char *dest, char *src, int n);

DESCRIPTION
 The strcpy() function copies the string pointed to by src,
 including the terminating null byte ('\0'), to the buffer pointed
 to by dest. The destination string dest must be large enough
 to receive the copy.

 The strncpy() function is similar, except that at most n bytes of
 src are copied. Warning: If there is no null byte among the
 first n bytes of src, the string placed in dest will not be NULL-
 terminated.

 If the length of src is less than n, strncpy() pads the remainder
 of dest with NULL bytes.

RETURN VALUE
 The strcpy() and strncpy() functions return a pointer to the
 destination string dest.

 Suppose that the author of string.h only got as far as writing this man page and not strncpy

itself. Complete the implementation of strncpy (not strcpy) on the page that follows, without,
to be clear, calling the version of strncpy that we know exists in reality. Be sure that your
implementation adheres to this man page’s specs. You may assume that neither dest nor src
will be NULL.

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2008

6 < 18

char *
strncpy(char *dest, char *src, int n)
{

for staff use only

 –

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2008

7 < 18

Multiple Choice.

For each of the following questions or statements, circle the letter (a, b, c, or d) of the one response that
best answers the question or completes the statement; you need not explain your answers.

7. (1 point.) The size of a pointer to a long long is

 a. 1 byte.
 b. 32 bytes.
 c. 32 bits.
 d. 64 bits.

8. (1 point.) Consider the two segments of code below, one at left, one at right, in which x is an int

initialized to some value.

// first segment
while (0 < x)
{
 x -= 1;
}
printf("x = %d\n", x);

// second segment
do
{
 x -= 1;
}
while (0 < x);
printf("x = %d\n", x);

 Under which of the following conditions will the two segments differ in output?

 I. x is 0 just before each segment executes
 II. x is greater than 0 just before each segment executes
 III. x is less than 0 just before each segment executes

a. I only
 b. III only
 c. I and II only
 d. I and III only

9. (1 point.) Suppose that x is an int. Which statements below print identical output if

x is (re-)initialized to 0 just before each statement executes?

 I. printf("%d", 0);
 II. printf("%d", x);
 III. printf("%d", x++);
 IV. printf("%d", ++x);

a. I and II only
 b. I and II and III only
 c. III and IV only
 d. I and II and IV only

circle one of these

circle one of these

for staff use only

 –

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2008

8 < 18

Rapid Fire.

Answer the questions below in no more than two sentences each.3

10. (2 points.) What does it mean to exploit a buffer overflow?

11. (2 points.) Name two ways in which you can induce a segmentation fault.

12. (2 points.) With respect to memory management, how is the heap different from the stack?

13. (2 points.) Why implement a function recursively if an iterative solution is also possible?

14. (2 points.) Why is Vigenère’s cipher more secure than Caesar’s?

3 Don’t think we won’t count!

for staff use only

 –

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2008

9 < 18

Ugh. Bugs.

Answer the questions below in no more than two sentences each.4

15. (1 point.) Even though the function below is supposed to return true only if n is positive, it

always returns true. Why?

 bool
 f(int n)
 {

 if (n > 0);
 return true;
 return false;
 }

16. (1 point.) Although the function below appears to induce an infinite loop, it does, in fact,

eventually stop printing asterisks. Why?

 void
 f()
 {
 for (int i = 1; i > 0; i++)
 printf("*");
 }

17. (1 point.) Even though the function below is supposed to return true if n equals 0, it always

returns false. Why?

 bool
 f(int n)
 {
 if (n = 0)
 return true;
 else
 return false;
 }

 4 Don’t think we won’t count!

for staff use only

 –

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2008

10 < 18

Role Reversal.

18. (1 point.) Suppose that you’re a TF and a student comes up to you at office hours. The student

explains that GCC is spitting out the message below.

 control reaches end of non-void function

 In one or more sentences, explain to this student (well, us) what this warning means with respect

to the student’s code.

19. (1 point.) Suppose that you’re still a TF and that same student comes up to you again at office

hours. The student explains that GCC is now spitting out the message below.

 implicit declaration of function 'GetString'

 In one or more sentences, explain to this student (nicely!) what he or she is doing wrong now.

20. (1 point.) Suppose that you’re still a TF and your favorite student comes up to you yet again at

office hours, this time bringing an apple, which kinda makes it all worthwhile. The student
explains that GCC is now spitting out the message below.

 undefined reference to 'GetString'

 In one or more sentences, explain to this student what he or she is doing wrong now.

for staff use only

 –

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2008

11 < 18

Argh. Args.

For the three questions below, suppose that you’ve executed some program, a.out, as follows.

username@cs50.net (~/quiz0/): a.out is such a silly name for a program

21. (1 point.) If main contains only the line below, what gets printed?

 printf("%d", argc);

22. (2 points.) If main instead contains only the line below, what gets printed?

 printf("%c%c", argv[2][0], argv[1][0]);

23. (1 point.) If main instead contains only the line below, what gets printed?

 printf("%d", strlen(argv[0]));

for staff use only

 –

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2008

12 < 18

O(mega).

24. (7 points.) Consider the laundry list of algorithms below.

 Binary Search, Bubble Sort, Insertion Sort, Linear Search, Merge Sort, Selection Sort

 Complete the table below, providing next to each bound one (and only one) algorithm known to

be constrained by that bound; you may assume any implementation details that you wish. You
may draw only from the laundry list above, but you may use each algorithm in that list once, more
than once, or not at all; the table below may thus contain duplicates. We’ve plucked off the first
row in the table for you.

Bound Algorithm

O(n2) Selection Sort

Ω(n2)

O(n log n)

Ω(n log n)

O(n)

Ω(n)

O(log n)

Ω(1)

25. (4 points.) In one or more sentences, explain (in English, not code or pseudocode) how Selection

Sort works. Then, in one or more additional sentences, explain why Selection Sort is in O(n2).

for staff use only

 –

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2008

13 < 18

HAI O.

26. (6 points.) A string t is said to be a “cyclic rotation” of a string s if it’s possible to “rotate” the

characters in s by some number of positions, n, such that s becomes t. We don’t mean “rotate” in
a Caesar sense here but in a left-right (or right-left) sense. For instance, t = “abanan” is a cyclic
rotation of s = “banana” because rotating the characters in “banana” to the right by n = 1 (i.e., by
one position), wrapping accordingly, yields “abanan”. It’s worth noting that rotating the
characters in s by n = 7 (or 13, 19, 25, etc.) would also yield t, since the length of “banana” is 6.
Similarly is t = “nabana” a cyclic rotation of s = “banana” because rotating the characters in
“banana” by n = 2 (or 8, 14, 20, etc.) positions yields “nabana”. It’s even valid to say that
s = “banana” is a cyclic rotation of t = “banana” because rotating s by n = 0 (or 6, 12, 18, etc.)
positions indeed yields “banana”.

 Complete the implementation of rotated on the page that follows in such a way that rotated

returns true if t is a cyclic rotation of s (i.e., there exists some n by which you can rotate s in
order to get t) else false. You may assume that neither s nor t will be NULL. For time’s sake,
comments are not necessary. But if you find yourself running out of time, you may resort to
pseudocode for partial credit.

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2008

14 < 18

bool
rotated(char *s, char *t)
{

for staff use only

 –

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2008

15 < 18

Sudoku.

This is not extra credit. ‘Tis just for fun.

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2008

16 < 18

Scrap Paper.

Nothing on this page will be examined by the staff unless otherwise directed in the space provided for
some question.

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2008

17 < 18

Scrap Paper.

Nothing on this page will be examined by the staff unless otherwise directed in the space provided for
some question.

