
Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2008

0 < 5

Quiz 0
Solutions

Answers other than the below may be possible.

Short Answers.

0. :-)

1.

 10111111
+ 00000001
 11000000

2. For efficiency, characters printed to stdout are buffered until a newline is printed or until a

buffer’s worth of characters are, at which point the buffer is flushed and those characters appear
on screen. Because neither a newline nor (apparently) a buffer’s worth of characters are printed
by this code, nothing appears to happen for quite some time. Calling fflush after each call to
printf would fix the problem, as would adding a newline to the string being printed.

3.
 void
 foo(int array, int n)
 {
 for (i = 0; i <= n; i++)
 n = GetInt();
 array[i] = n;
 return n;
 }

wrong type; should be:
*array or array[]

returns a value; should be just:
return;

iterates beyond array’s bound; should be <

missing type; should be:
int i = 0;

not in curly braces and clobbers n; should be:

array[i] = GetInt();

or

{
 int input = GetInt();
 array[i] = input;
}

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2008

1 < 5

4.

printf("%d", a); 0

printf("%d", b); 0

printf("%d", c); 0

printf("%d", *d); 0

printf("%d", e); 0

5. YES

strcrazy.

6. char *
 strncpy(char *dest, char *src, int n)
 {
 // check whether src is shorter than dest
 int length = strlen(src);
 int min = (length < n) ? length : n;

 // copy chars from src to dest
 for (int i = 0; i < min; i++)
 dest[i] = src[i];

 // pad dest with \0's if necessary
 for (int i = min; i < n; i++)
 dest[i] = '\0';

 // return pointer to copy
 return dest;
 }

Multiple Choice.

7. c1
8. d
9. b

1 assuming a 32-bit x86 architecture

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2008

2 < 5

Rapid Fire.

10. Exploiting a buffer (i.e., array) involves filling (or, really, overflowing) that buffer with more bytes

than it was intended to contain. If those bytes happen to represent executable code, it’s
sometimes possible to “trick” a computer into executing those bytes by overwriting a function’s
return address on the stack.

11. By indexing into an array beyond its bounds.
 By calling so many functions (e.g., recursively) that the stack overruns the heap.
 By dereferencing a NULL (or otherwise invalid) pointer.

12. Memory allocated on the heap (via malloc) persists (i.e., belongs to a program) until it is

explicitly freed (via free), whereas memory allocated on the stack (in the form of functions’ local
variables) persists only until the function for which the memory was allocated returns.

13. A recursive approach can sometimes be more straightward (or elegant) to implement or read.

14. Vigenère’s key space is larger. Whereas Caesar’s cipher allows for 26 possible keys, Vigenère’s

cipher allows for 26n, where n ≥ 1, assuming a 26-letter alphabet.

Ugh. Bugs.

15. Because of the (presumably accidental) semicolon on the same line as the condition, the line

immediately below (return true;) executes unconditionally!2

16. Because i is a signed int, the largest positive value that it can store is 231 – 1, which is

01111111111111111111111111111111 in binary or 2,147,483,647 in decimal. Trying to
increment i beyond that maximum yields 10000000000000000000000000000000 in binary or
-2,147,483,648 in decimal, an instance of overflow; the negative value induces the loop to
terminate.

17. Because of the (presumably accidental) use of the assignment (=) instead of equality (==)

operator, the condition always evaluates to 0 (i.e., false), and so only false is ever returned.

Role Reversal.

18. In some (or all) cases, the student’s function doesn’t actually return a value (e.g., the student left

out a return statement altogether), even though its return type is not void.

2 Quiz 0 went to press with a return type for this function of void instead of bool, an unintentional bug on our part; we thus
accepted answers that focused on that bug as well.

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2008

3 < 5

19. The student failed to include

 #include <cs50.h>

 atop his or her code.

20. The student failed to compile with -lcs50, which tells GCC to link the student’s code against

(i.e., borrow bits from) CS 50’s library.

Argh. Args.

21. 9
22. si
23. 5

O(mega).

24.

Bound Algorithm

O(n2) {Bubble Sort, Insertion Sort, Selection Sort}

Ω(n2) {Insertion Sort, Bubble Sort, Selection Sort}

O(n log n) Merge Sort

Ω(n log n) Merge Sort

O(n) Linear Search

Ω(n) {Bubble Sort, Insertion Sort}

O(log n) Binary Search

Ω(1) {Binary Search, Linear Search}

25. Given an array of size n, selection sort makes n – 1 passes over the array. On each pass, it selects

the smallest element not previously selected and swaps that element (in constant time) with the
leftmost element not previously selected. After k passes, the k smallest elements thus appear in
order in the first k locations of the array. So after n – 1 passes, the array is sorted. Since each pass
can involve as many as n – 1 comparisons, this algorithm is in O(n2).

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2008

4 < 5

HAI O.

26. bool
 rotated(char *s, char *t)
 {
 // determine length of s
 int n = strlen(s);

 // ensure lengths are equal
 if (n != strlen(t))
 return false;

 // try all possible rotations of s
 for (int i = 0; i < n; i++)
 {
 int matches = 0;
 for (int j = 0; j < n; j++)
 if (s[(i + j) % n] == t[j])
 matches++;
 if (matches == n)
 return true;
 }

 // not rotated!
 return false;
 }

Sudoku.

