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1.1

Quiz 0
Helpful Hints

Here are a few study tips for preparing for the first quiz.

Read http://csb0.net/lectures/weeks/5/aboutquiz0. pdf.

Practice tracing through code. Be prepared to do the kind of problems/programs that have appeared
in section and lecture.

Be prepared to identify bugs in a segment of nearly working code. Review common pitfalls and make
a list of the errors which caused you the most grief when debugging your last two assignments. Be
comfortable with true/false, one/zero, if-else, switch, comparison operators (<, >, ==) and logical
operators (&%, | |). Remember: 0 is false, 1 is true.

Read over the part of the lecture notes which discusses compiling, libraries, etc. You do not have to
know this in great detail, but you should understand what is going on when you ask the computer to
compile your program. Review all the lecture notes and section notes. Find and make note of tricky
syntax.

While everything we’ve covered is fair game for the quiz, the focus will be on conceptual understanding
and your ability to code (short programs) in C. You should also review the programmatic constructs
supported by Scratch, though you certainly needn’t memorize all of Scratch’s puzzle pieces.

The quiz is closed-book, but you’re allowed to bring “one two-sided page (8.5” x 11”) of notes, typed
or written.” Use that page to jot down details you're worried you might forget (e.g., the format of a
for loop in C). To be clear, it’s not terribly important to have such details memorized at this point
(after all, you can always look such up in the real world). But why waste time on the quiz trying to
remember little things like that.

If you need to prioritize your prep, the best guide to the material we’ve covered thus far is perhaps the
scribe notes, available under Lectures on the course’s website.



1.2 Topics

What follows is a non-exhaustive list of some topics which might show up on the quiz.

Abstract concepts.
e hierarchical decomposition
e error checking
e basic debugging

Basic Linux Commands. Make sure you know what Linux commands are, and how to use the basic ones
such as: 1s, cd, ssh, man, etc.

Compilation. What is the process of compilation; in particular, how do you compile a C program using
gec?

Binary. Can you convert a number into binary, and read binary numbers?
ASCII. What is the ASCII standard, and why do we have one?

Cryptography. What is cryptography and how does it work in general terms. Also you should be familiar
with the Caesar and Vigenere ciphers and understand how to code them in C.

1.2.1 C Programming Topics

Preprocessor Commands. What is the C preprocessor? You should also be familiar with the directives:
e #include

o #define

Types. Be familiar with the basic C numeric types, and the CS-50 types:
e char, int, float, double
e bool, string

What is an unsigned int?

You should also be familiar with array types: how to declare and initialize them, indexing into them
using brackets (a[i]), and passing them as arguments to functions.
Variables.

e declaration uninitialized int x;

e with initialization int x = 7;

e local versus global declaration

e understand variable scoping and be able to say what the scope of variable is



Operators.
e What are operators and operator precedence?
e Be familiar with the various operators: arithmetic (+), logical (||), relational (<), assignment (=), etc.

e Remember shorthand operators such as ++, — =, etc.

Library Functions. Make sure you know how to use common library functions. In particular:
printf:

o %d %f %he %s

e field width specification

e precision specification

e justification specification
CS-50 functions:

e GetInt()

e GetString()

Control Flow Constructs. You should be comfortable with the C control-flow constructs.

o if if-else switch for while do-while break continue

Defining Functions. Make sure you can declare and define functions with return and argument types.
What happens when you call a function: are the arguments copied? How do you use return?
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Practice!

Below are several questions that are of the sort you will find on the quiz. While this is by no means a
comprehensive review of all topics, it will help you study for the quiz. Of course, you should also attend
section, and study the course materials.

Study Questions.

1.

10.
11.

12.

13.

Describe the difference between a while loop and a do-while loop. Give an example of an instance
where a while loop would be more useful and another where a do-while loop would be more useful
and explain why.

Write a for loop that calculates the sum of the numbers 1 through 10 and stores the result in an
integer variable sum. Then convert it to a while loop.

Translate the numbers 12, 33, and 47 into binary. What is the binary number 1010110 in decimal?

What is hexadecimal (hex)? How does it relate to binary?

. What ASCII codes are assigned to the characters 'a’ and ’A’?

Explain what typecasting is, and why it might be useful.

Take your favorite Scratch pieces and determine whether their equivalent lines of C code would be
classified as a loop, condition, statement, or boolean expression.

If there are 129 students in a class, how many steps would it take to count them all using the most
efficient method demonstrated in the first lecture of this class?

What is a variable?
What is two’s complement and why is is convenient for working with binary numbers?

How would you compile a program saved as example.c that uses the method GetInt() from the CS50
library such that the resulting file would be named a.out? What if we wanted to call it examplel?

‘What does the line
#include <stdio.h>

do in a program? Name one function that is declared in stdio.h.

Say that at the top of our program we have the following two lines of code:

#include <time.h>
#include "clock.h"

Why is time.h in angle brackets and clock.h in quotes? What does this say about the locations of
the header files time.h and clock.h?



14. Find and correct at least 3 distinct errors in the following piece of code:

int
main(int argc, int * argvl[])
{
int x, y;
// ask user for input
printf("Give me an integer: ");
x = GetInt();
printf("Give me another integer: ");
y = Getint();

// do the math
printf ("The remainder when %s is divided by %d is %d!\n", x, y, x / y);
}

15. How many times will “hello, world” print to the screen when the following code is executed?

for(i = 0; i < 10; i++) {
for(j = 3; j < 303; j +=3) {
printf("hello, world\n");
}
}

16. David has written a program that takes a student’s quiz score and assigns a letter grade to it. The
code in the giveGrade () function looks like this:

char giveGrade(int quizScore) {
int newScore = round(quizScore);
char letterGrade;

switch(newScore) {
case 100: case 90:
letterGrade = ’A’;
case 80:
letterGrade = ’B’;
case 70:
letterGrade = ’C’;
case 60:
letterGrade = ’D’;
break;
default:
letterGrade = ’F’;

return letterGrade;

}

Assuming that the function round() takes as its input a quiz score between 0 and 100, and outputs
that number rounded down to the nearest 10 (e.g. round(74) returns 70 and round(80) returns 80),
explain why everyone in the class is really upset about their grade.



17.

18.

19.

20.

21.
22.
23.

24.

25.

26.

Explain what the following for loop does and how it accomplishes it:

for (c = ’A’; c <= ’Z7; c++)
{

printf ("%c", c);
}

Write the few lines of C code that would print out the multiplication table from 1 to 100 in the following
format. (This one’s a bit trickier than the others, but good practice nonetheless.)

1 2 3 4 5 ... 10
4 6 8 10 .... 20
10 20 30 40 50 .... 100

Write a function called swap that takes two arguments as integers, and swaps their values locally
without returning anything. If this function is called from main as:

swap(a,b);

where a and b are integers declared in main, what will happen to the values of a and b? What is one
solution to this problem?

If main calls the function domath, and domath calls the function pow, what function will be on the top
of the stack right before pow returns: main, domath, or pow?

Give at least two reasons why #define statements are useful.
How is #define different from #include? What, basically, does #include do?

What does strlen(a) return if a = “hello, world!”? How many bytes does it take to store that
string?

Write the lines of code that loop through a string, s, and print each character out on a line by itself.
For example, if s = “hello”, then your program should print:

o H KO P

If a program, commandline, is executed as follows from the prompt:
> commandline pick apple cheese

what will be contained in the memory location designated by argv[1] [1]7?

How do you initialize a 1-D array? A 2-D array? An N-D array?



27.

28.
29.
30.

31.

32.

33.
34.

35.

Write code that will print out the contents of the following array:

int numbers[5][3] = { {1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {10, 11, 12},
{13, 14, 15} };

(a) Intheorder: 1 2 34567 89 10 11 12 13 14 15
(b) In the order: 1 4 7 10 13 2 58 11 14 3 6 9 12 15

Write a function that will test to see if an array of integers is in sequential (ascending) order.
Write a function that will compare two strings. Why can’t you just compare strings using ==7

How many different keys for the Vigenere cipher can be produced with an alphabet of 26 characters?
(a) 26! (b) 26n (c) 26™ (d) n28

What does this program do?

#include <stdio.h>

int main(int argc, char* argv([]) {
printf("%d ", argc);
if (argc) main(argc - 1, argv);
else printf("\n");
return 0;

}
What is the printout of this program? k, pk, ppk, &k, &pk, or &ppk?

#include <stdio.h>
int main() {

int k = 3;

int *pk;

int **ppk;

pk = &k;
ppk = &pk;

printf ("%x", (*(&(*x(*ppk)))));
}

Write one line of code that would dynamically allocate an array of 8 doubles.

What do we call it if we do not free all malloced memory? What is another major error that we can
make involving the use of free?

Write a function that runs in O(n?) that takes as parameters (1) an array of unsorted integers and (2)
the size of that array, and prints out the sorted array.



36. Challenge question. Explain what is happening in this program:

#include <stdio.h>
#include <string.h>

void baz(char *qux, int bar);

int main(int argc, char *argv[])

{
if(argec !'= 2)
return 1;
baz(argv[1], strlen(argv[1]));
}
void baz(char *qux, int bar)
{
char fool[bar+1];
strcpy(fool, qux);
char foo2[bar+1], *xyzzyl, *xyzzy2;
xyzzyl = fool + bar - 1;
xyzzy2 = foo2;
while(xyzzyl >= fool)
*xXyzzy2++ = *xyzzyl--;
xxyzzy2 = ’\0’;
printf ("%s %s\n", fool, foo2);
return;
}



