
Section Notes 8

Computer Science 50 — Fall 2008

Week of November 9, 2008

Contents

1 Bit Strings 1
1.1 Bitwise AND . 2
1.2 Bitwise OR . 2
1.3 Bitwise NOT . 2
1.4 Bitwise XOR . 3
1.5 Summary Table . 3
1.6 Shift Operators . 3

2 Hash Tables 3
2.1 Hash Table Structure . 3
2.2 Hash Functions . 4
2.3 Collisions . 5
2.4 Implementation 1 — Separate Chaining . 5
2.5 Implementation 2 — Linear Probing . 5

3 Trees 7
3.1 Binary Trees and Search Trees . 7
3.2 Trying Out “Tries” . 8

4 Heaps 9
4.1 Heap Operations . 10

4.1.1 Inserting Elements Into a Heap . 10
4.1.2 Deleting the Largest Element of a Max-Heap . 11
4.1.3 Heapifying a Complete Binary Tree . 12

4.2 Heapsort . 12

5 Data Compression 12
5.1 The Need for Data Compression . 13
5.2 Huffman Encoding . 13

5.2.1 Prefix Property and Immediately Decodable Encodings 13
5.2.2 Building the Huffman tree . 13
5.2.3 Properties of Huffman Trees . 14
5.2.4 Example of Building a Huffman Tree . 14
5.2.5 Decompressing using the Huffman tree . 14

1 Bit Strings

As you know, everything in your computer is represented as a string of 0s and 1s. Usually the machine
interprets such bit strings as numbers, or addresses, or characters, or combinations of those that form
more complicated data structures. But the machine also provides operations for treating integers as simple
sequences of bits. It’s kind of like treating an int as an array of 32 bool values, except that you can’t access
the ith element using the notation s[i]. But the advantage is that the bit string is packed much more

1

efficiently than an actual array of bools, and you can operate on the elements of bit strings in parallel using
a single machine operation.

For example, in UNIX/Linux, the low-level system call for opening a file is named open, and you typically
call it like this: open("errors.log", O CREAT | O TRUNC | O WRONLY). The first argument is the name of
the file to be opened. The second argument is an integer that represents a set of flags, or Boolean properties.
O CREAT means create the file if it doesn’t exist. O TRUNC means truncate it to zero length if it does exist.
And O WRONLY means don’t allow it to be read until it’s closed. The bitwise operator “|” combines these
properties into an integer that represents the set of all three flags, and passes that set as a single, compact
parameter to open. The implementation of open uses other bitwise operators to test its flags argument.
For example, the statement if (flags & O CREAT) { ... } will test whether the file should be created.
The result of the & expression is non-zero if O CREAT is in the flags set, and zero otherwise.

Operations like “|” and “&” are called “bitwise” because the computer determines the value of each result
bit only by looking at the corresponding pair of bits in the operands (the arguments of the operation). The
system flags used in this example are defined like this:

#define O_WRONLY 01
#define O_CREAT 0100
#define O_TRUNC 01000

The representation of each one has a single “1” bit, and no two are equal. The combination of the three
flags in the argument to open shown above has the value 01101. That is, it includes the bits for all three
flags. So this bit string represents a set that contains those three properties and no others. To test for the
presence of a particular flag such as O CREAT, open uses the & operator to check whether that flag’s bit is set
in its flags argument.

The following subsections describe the bitwise operations provided in C. For simplicity, we’ll use 8-bit
binary integers (e.g. 00101001 or 10100101) as examples, but these operations work on all of the integer
types. When programming with these operations, it’s important to distinguish the logical operations that
we’ve learned already from these new bitwise operators. The logical OR of two integers (operator “||”)
produces true if either operand is non-zero. The bitwise or of two integers (operator “|”) produces a new
integer, each of whose bits is the logical OR of the corresponding bits in the two operands. Be careful not
to confuse these closely related operations.

1.1 Bitwise AND

Bitwise AND is written a & b. Each output bit is 1 if the corresponding bits of a and b are both 1, and 0
otherwise. For example:

a 01011011 a 10110101
b 10001101 b 01010101

a & b 00001001 a & b 00010101

1.2 Bitwise OR

Bitwise OR is written a | b. Each output bit is 1 if either of the corresponding bits of a and b is 1, and 0
otherwise. For example:

a 01011011 a 10110101
b 10001101 b 01010101

a | b 11011111 a | b 11110101

1.3 Bitwise NOT

Bitwise NOT is a unary operator, written ~a. Each output bit is 1 if the corresponding bit of a is 1, and 0
otherwise. For example:

a 01011011 a 10110101
~a 10100100 ~a 01001010

2

1.4 Bitwise XOR

Bitwise XOR (exclusive OR) is written a ^ b. Each output bit is 1 if exactly one of the corresponding bits
of a and b is 1, and 0 otherwise. For example:

a 01011011 a 10110101
b 10001101 b 01010101

a ^ b 11010110 a ^ b 11100000

1.5 Summary Table

a b a & b a | b ~a a ^ b
0 0 0 0 1 0
0 1 0 1 1 1
1 0 0 1 0 1
1 1 1 1 0 0

1.6 Shift Operators

Two other operations on bit strings in C are often used in conjunction with the bitwise operators above.
These are the left shift (<<) and right shift (>>) operators. The expression s << i treats integer s as a bit
string, and i as a number of bits to shift that string to the left. Zero bits are inserted at the right, and bits
shifted beyond the left boundary of the bit string are discarded.

For an unsigned integer s, the right-shift operation is exactly the opposite, with zero bits entering at
the left and discarded bits dropping off the right to form the result. However, if s is a signed integer that
happens to be negative, the bits entering the left are normally ones, rather than zeros, so that the sign of
the result retains the sign of s. (Surprisingly, the language definition does not guarantee this behavior!)

Just as adding zeros at the right of a decimal number is equivalent to multiplying by a power of 10, the
left-shift operation s << i amounts to multiplication of s by 2i. Similarly for right-shift and division.

2 Hash Tables

As we have seen previously, linked lists are data structures that support efficient insertion and deletion of
elements. We can accomplish these operations in constant time–time that is unrelated to the number of
elements in the data structure. However, on average, each lookup operation takes n

2 comparisons, where n
is the number of items in the list. Thus, as the list grows longer, the average time to look up an element
takes proportionally longer.

How can we build a lookup function that doesn’t have to loop over all of the elements stored in our data
structure? One option would be for us to change our data structure so that something about the structure
of a datum tells us where to find it. A hash table does exactly this. A hash table is a data structure where
insertion, deletion, and lookup of data can each be accomplished in nearly constant time (on average). The
data structure isn’t perfect, however. While insertion, deletion, and lookup are very fast, hash tables do not
easily support ordering or sorting of the stored data. Still, a hash table is a good data structure for a spell
checker, since we don’t have any real reason to print out the entire list of words in our dictionary.

To build a spell checker, we will want our hash table to store string values. You should however realize
that the data structure can be used for storing other types of data as well.

2.1 Hash Table Structure

Hash tables are basically arrays coupled with a function (called the hash function) for mapping the values
of the stored objects to indices in the storage array (or table). For our task, we will define a hash function
that maps a string to an integer (also called a hash code). Since we will use the hash code as an index
into a C array, we want it to fall in the range [0, TABLE SIZE - 1], where TABLE SIZE is the number of
elements in the array representing our hash table. An easy way to do this is to calculate the initial hash
code independently of this range, and then take the initial value modulo the table size.

3

2.2 Hash Functions

The simplest definition of a hash function is some function that maps a (not necessarily integral) data type
onto integers.
There are infinitely many possible hash functions, but not all of them are necessarily useful or good.1 An
example of a very simple hash function on strings could be adding the ASCII values of all the letters in the
string, and then mod’ing by the size of the hash table. Here it is, in pseudocode:

for(i goes from 0 to length(str)-1) {
sum += str[i]

}
return sum % HASH_TABLE_SIZE

We hope that, by this point, you are able to write this function in real C very quickly.
To store a string in a hash table, one merely puts the string in the array at the index given by its hash

code. For instance, if we had a hash table of size 13, and the string “Lisa” has hash code 11 and “Bart” has
hash code 7, then the hash table would look as follows:

0

1

2

hash("Bart") returns 7

6

7

9

3

8

4

5

10

11

12

"Bart"

"Lisa"

hash("Lisa") returns 11

To see if the string “Bart” is in the hash table, one computes the hash code for “Bart” (7), and sees if
“Bart” is stored at that index in the array. Note that neither insertion nor lookup involve iterating over the
elements in the array in this example.

To have a good hash table, we’d like to have a large number of different possible hash codes, which are
all generated by our hash function. A good hash function has several properties:

1. The hash code is fully determined by the string being hashed. (And nothing else.)

2. The hash code for two identical strings is the same. (No “random numbers” involved in the calculation.)

3. The hash function uses the whole string. If we only used some part of the string, then we wouldn’t be
maximizing the number of possible hash codes and our table would not be very good.

For example, if we had the two strings “happy” and “happiest”, we would like them to hash to different
places in the table. But if we calculated the hash code based on only the first few letters of the strings,

1The course staff encourages you to search the Internet for good (evenly and randomly distributing) hash functions, which
you may use or modify in your code. If you choose to use a publicly available hash function, however, you must cite the location
in a comment.

4

the hash code for both these strings would be the same, and the strings would occupy the same location
in our hash table.

4. The hash function “uniformly” distributes the strings in the hash table.

5. The hash function can generate very different hash codes for similar (but not the same) strings.

2.3 Collisions

The prior section referred to an ideal hash table because, when the hash function is applied to different strings,
the strings may happen to hash to the same value (especially with a table size of only 13). Obviously, a
single array location can hold only a single value. When two values produce the same hash code, we have
what is called a collision.

There are numerous methods for handling collisions in a hash table. Two of the most common methods
are discussed here. The first method, called separate chaining, leverages what you have learned about linked
lists. The second method, called linear probing, removes the need for dynamically allocated storage.

2.4 Implementation 1 — Separate Chaining

In separate chaining, each element of the hash table is a pointer to the head of a linked list.2

In the picture below, “Bart” has a hash code of 7, and “Lisa” and “Maggie” both have a hash code of
11. The hash table is of size 13.

0

1

2

6

7

9

3

hash("Maggie") returns 11

8

4

5

10

11

12

"Bart"

"Maggie" "Lisa"

hash("Lisa") returns 11
hash("Bart") returns 7

The implementation of insertion first hashes the string. The list at the computed hash code is checked
to see if the word already exists in the table. If it doesn’t, the word is inserted at the head of the linked list.

The lookup process first hashes the string, and then searches through the linked list starting at the table
element associated with the resulting code. If it finds the string, lookup is successful; if not, the lookup fails.

2.5 Implementation 2 — Linear Probing

An alternative implementation for a hash table uses a technique called linear probing. In this method, the
elements of the array hold single values, not linked lists of them. If a collision occurs, the algorithm tries
array elements sequentially until an empty cell is found.

In the picture below, “Lisa” has been inserted first, with a hash code of 11, “Bart” was inserted with a
hash code of 7, and finally “Maggie” was inserted with a hash code of 11.

2Combining data structures FTW!

5

0

1

2

6

hash("Maggie") returns 11

7

9

3

8

4

5

10

11

12

"Lisa"

"Maggie"

"Bart"

hash("Lisa") returns 11
hash("Bart") returns 7

This technique is subject to a problem called clustering. Once a collision occurs during insertion, there
will be two table cells next to each other that are occupied. Afterwards, an insertion that collides with either
of those cells will cause that cluster to grow. Now the probability is even larger that another collision will
cause the cluster to grow.

The picture below shows what happens when “Homer” is inserted, with a hash code of 12.

0

1

2

6

7

hash("Homer") returns 12

9

3

8

4

5

10

11

12

"Lisa"

"Maggie"

"Bart"

"Homer"
hash("Lisa") returns 11
hash("Bart") returns 7
hash("Maggie") returns 11

The notion of linear probing is only one method of “probing” through the list for the next available slot.
Another common approach is quadratic probing. Instead of searching for the next available cell, it checks
the cell just beyond the current cell. If that cell is not free, it then checks the cell 4 (22) beyond that, then
9, 16, 25,

There are a couple other caveats we should mention. If you apply the linear probing model to resolve
conflicts, you will need to be careful that your program doesn’t get into an infinite loop when the table fills
up. (Why don’t you have this problem with a chaining model?) With quadratic probing, you could even find

6

yourself with a relatively sparsely populated hash table (i.e., there are empty cells), but still be unable to
insert a string. How so? Consider a hash table of size 10, and suppose we have a really poor hash function,
such as:

int
hash_function(char *word)
{

return 0;
}

Initially, we have inserted the strings “Albert”, “Bryan”, “Cindy”, and “Diane” (in that order) into the hash
table, so that it looks like this. (Remember that we are using a quadratic probing model...so make sure you
understand why the table looks like this. If you are confused, ask a TF.)

If we try and insert the string “Edward”, we have to wait until we are probing 1+4+9+16+25+36+49+
64+81+100+121 cells in advance (“Edward” will be in cell 6). “Francine” requires us to go 1+4+ . . .+169
cells in advance (“Francine” will be in cell 9), and so on. Admittedly, we picked an unrealistically bad hash
function to illustrate a point. Even so, the potential inefficiency is significant, and it’s not as easy to avoid
an infinite loop as in the case of linear probing.

3 Trees

Trees are an extremely useful data structure that are a slight modification of something you’ve seen before,
but in many ways are much more powerful and give us the ability to do a lot of really neat stuff.

3.1 Binary Trees and Search Trees

2 10

1 85 15

6
Root node

Interior

nodes

Leaf nodes

Figure 1: A Binary Search Tree

Note that, as we see in the above image, the structure of a node in a binary tree is very similar to an
element of a doubly linked list: we have two node pointers and some data. As a data structure, however,

7

the binary tree is quite different from a linked list. This difference arises from the meaning we assign to
the fields in the nodes (left and right children, instead of prev and next elements), and by enforcing
that meaning through the operations we are allowed to perform (i.e., a binary tree node may not point at
its parent with the left or right pointers; it must point at its children or nothing at all, NULL). Here is an
example of a binary tree node implementation:

typedef struct node
{

value val;
struct node *left;
struct node *right;

} node;

Binary trees are great when you want to use binary search. If you build up the binary tree such that for
each node, every value on its left child’s side is less than the node’s associated value of the node, and every
value on the right side is greater, then we can easily perform a binary search for a given value in the tree.
We call a tree with this ordering of the nodes a binary search tree. Not only the search algorithm itself, but
also the operations for updating the tree run in time proportional to the height of the tree, i.e., the distance
from the root of the tree to its deepest leaf node.

The code for searching a binary tree looks like:

bool
binary_search(node *root, value val)
{

if (root == NULL)
return false;

if (root->val == val)
return true;

else if (val < root->val)
return binary_search(root->left, val)

else
return binary_search(root->right, val)

}

3.2 Trying Out “Tries”

An associative array or dictionary is a generalized array that allows you to associate values with keys that
are more descriptive than simple integers, as with ordinary arrays. For instance, suppose you need a data
structure that allows you to look up the records for a student starting from his or her 8-digit university ID.
A simple array would need too many entries. You could use a hash table, extracting hash codes from either
the numerical or the string representation of the student IDs. Or you could build a tree, placing the student
records at the leaves of the tree. In such a tree, the paths from the root to a leaf would be labeled with digits
of the ID. Each interior (non-leaf) node could therefore have as many as ten children. To find a student
record, you would start at the root and use successive digits of the student’s ID to choose successive child
nodes until you reach the desired record or you reach a dead end (meaning that the student hasn’t yet been
inserted in the tree).

Such a tree is called a trie. In general, there may be data stored at interior nodes, not just at leaf nodes.
Figure 2 shows a dictionary trie in which the keys are sequences of lower-case letters. The node data type
for such a trie might look like this:

typedef struct trie {
char *data;
struct trie *children[26];

} trie;

Here the data field is NULL if the path to the node is not a valid word, and otherwise it represents the word
in string form.

Tries can be quite efficient for lookup in terms of time, but they can also consume lots of space.

8

Figure 2: An trie that maps a word to itself.

4 Heaps

The word heap unfortunately has multiple meanings in computer science. When we say the heap, we usually
mean the pool of storage that’s managed using malloc and free. But an earlier use of the word “heap” is
to describe a tree whose node labels are partially ordered. In particular, a heap is a binary tree satisfying
these two properties:

1. Every level is completely filled with nodes except, perhaps, for the bottommost level. Nodes appearing
on the bottom level are in the leftmost locations.

2. Each node’s label is at least as big as those of its children, if it has any.

Figure 3 gives an example of a heap.3

Figure 3: An example of a heap.

Heaps are sometimes used as “priority queues” because the maximum element (the one with highest
priority) can be located quickly, yet the queue doesn’t have to be completely sorted. On the the other hand,
heaps can be used as part of a sorting algorithm called heapsort that produces a total ordering in time that’s
comparable with merge sort and quicksort.

Table 1 summarizes the time complexity for some common operations over the data structures that we
have covered so far. Determining which operations you use most often can often help you decide which
data structure is best. Note that this table assumes that the structures are sorted before performing these
operations.

* Assuming the list is in ascending order.
3All images in this section are borrowed from Wikipedia.

9

Operation Sorted Array Sorted Linked-list Binary Search Tree Binary max-heap
Insert an element in order O(n) O(n) O(log n) O(log n)

Find element by index O(1) O(n) N/A N/A
Find element by value O(log n) O(n) O(log n) O(n)

Find max element O(1) O(n)* O(log n) O(1)

Table 1: Time complexity for various operations across common data structures

4.1 Heap Operations

4.1.1 Inserting Elements Into a Heap

To insert elements into a heap, we can use an operation known as up-heap, which will restore the heap-order
property to the heap after we insert the element. Insertion goes as follows:

1. Add the new element node to the bottom level of the heap (make sure to maintain a binary complete
tree).

2. Compare the element to its parent. If the element is less than or equals its parent, stop.

3. If the element is greater than its parent, swap the element with its parent.

4. Move to the element in its new location. Begin again from step 2.

The up-heap algorithm is the loop in steps 2 through 4, which bubbles the new element up to its proper
location. This algorithm runs in O(log n) time, since the depth of the tree is log n, and we only perform one
comparison/swap per depth level. Figures 4 through 6 illustrate the process of adding a new element to a
heap:

Figure 4: Given the following heap, we want to add the element 15. We put the element in at the bottom
of the tree at X.

Figure 5: We then compare 15 to its parent node, 8. Since the nodes are out of order, we swap, and run the
algorithm again from 15’s new location.

10

Figure 6: 15 is greater than 11, so we swap 11 with the greater of its two children (which happens to be 15).
The tree now satisfies the heap-order property.

4.1.2 Deleting the Largest Element of a Max-Heap

Deleting the max element, or root, of a heap is essentially the reverse process of adding a new node to the
heap. It uses a down-heap operation that causes a new element to sink to its proper place in order.

1. Swap the root of the tree with the rightmost element in the bottom level of the heap. After the swap,
you can remove the former root.

2. Compare the element to its children. If it is ≥ both children, or if no children exist, stop.

3. If the element is less than either child, swap it with the greater of the two children.

4. Move to the element in the new location. Begin again from step 2.

The down-heap algorithm is the loop in steps 2 through 4. This algorithm also runs in O(log n) for the
same reason as inserting an element. Figures 7 and 8 illustrate the process of deleting an element.

Figure 7: We begin again with the same max-heap as before. 11 is our maximum node, so we swap it with
the rightmost element in the bottom level, 4. We can then remove the 11.

Figure 8: Starting at 4, we compare 4 to each of its children. If the node is less than either of them (in this
case it is less than both), we swap it with the greater of the two children nodes. In this case we swap 4 with
8. The heap now satisfies the heap-order property. Note that if 4 had children at its new location, we would
need to continue to make comparisons until the entire subtree satisfied the heap-order property.

11

4.1.3 Heapifying a Complete Binary Tree

Arbitrary complete binary trees can be turned into heaps by a process known as heapifying as explained in
lecture.4 Heapifying works by starting with the leaf nodes, and recursively making heaps out of larger and
larger subtrees. Since we work from the bottom up, when we heapify a node, we can assume that its subtrees
are heaps. Therefore, this node is the only one that could break the heap-order property. We can put this
node in its correct place by using down-heap. The algorithm is as follows:

1. Start at the rightmost node on the bottom level.

2. If the node has no children, move to the adjacent left node on the same level. If you are at the leftmost
node, move up one level to the rightmost node. (This is called “reverse level-order” node traversal.)

3. If the node has children, run down-heap on it. This will turn the subtree into a heap.

4. Move to the next node in reverse level order.

4.2 Heapsort

Using the heap functions described above, we can implement a sorting algorithm using heaps that runs in
O(n log n) time. Once we construct a heap out of our elements, we can then continually extract the max
node from the heap using down-heap as described above. By extracting the nodes in this manner, we are
ensured to get the elements in order from greatest to least. This algorithm is comparable to other O(n log n)
sorting algorithms, such as merge sort and quick sort.

The pseudocode for heap sort is as follows:

Heapsort(tree, n) // input is our unsorted tree of n nodes
{

Heapify(tree)

create output_array

count = 0
while count < n

next_biggest = delete_max()
insert next_biggest into output_array

}

What is the time complexity of heap sort? Heapifying the tree initially takes O(n log n) time, since we
potentially make a swap at each of the n nodes. Then, we extract the n nodes from the heap in reverse
order. When we extract the maximum node by calling delete max(), we must re-heapify the tree which
takes O(log n) time.

What simple changes can you make to your heap operations (heapify, up-heap, and down-heap) so that
running heapsort gives you the elements in order from smallest to greatest?

5 Data Compression

At some point, you’ve probably encountered a .zip file, more correctly termed a zip archive. What is an
archive? An archive is a compressed version of some data. When you need to access the data, you can
decompress the data and then you have access to it. In a world where our hard drives get bigger and bigger,
you might think that it’s not as necessary to zip things as it was before. But we argue that it’s always
important to be space efficient.

4Computer scientists can verbify any noun.

12

5.1 The Need for Data Compression

The world is full of information, lots and lots and lots of it. All of this information is stored on disk in the
form of strings of 1’s and 0’s. While we often simply store these 1’s and 0’s unmodified on disk, this is not
necessarily the most space efficient method for storing information. It turns out that we can often store an
alternate representation which uses less disk space, and later recover our original data from this encoding.

One common and natural way to think of a file is as a sequence of characters. Since an 8-bit byte is
customarily the smallest addressable storage unit in computers, it’s natural to represent each character as
an 8-bit value. That means a file of n characters will occupy 8n bits on disk. Alternatively, a file using the
emerging Unicode encoding might use 16 bits to store each character, so the file will be twice as large. Since
each of these representations uses a fixed number of bits to represent a character, each is an example of a
fixed-length encoding of data. Files encoded under fixed-length encoding schemes are decoded by looking at
file blocks of constant length (e.g., 8-bit or 16-bit blocks).

5.2 Huffman Encoding

Understanding how to Huffman encode and decode is a relevant skill, especially if you are interested in
keeping all your CS50 projects and trying to remain under quota. This week we’ll examine in detail the
specific compression scheme that’s used and the data structures that represent it effectively.

Unlike ASCII, Huffman encodings are variable-length encodings, meaning that each character can have
a representation of different length. If we can somehow figure out which characters occur most often, and
encode them with fewer than 8 bits, we might be able to save some space over ASCII. However, if we do this,
then we will have to code some of the less frequently occurring characters with more than 8 bits. Ideally,
we’d like to minimize the total number of bits used.

5.2.1 Prefix Property and Immediately Decodable Encodings

There are many ways to design a variable-sized encoding of data, but Huffman encoding has another property
that will prove useful, the prefix property. This means that no bit representation for any of the characters is a
prefix of any other character’s representation. An encoding with the prefix property is said to be immediately
decodable. Why is this fact so crucial? Consider the following example: If we use the coding in Figure 9 to

A 0
B 1
C 01
D 11

Figure 9: Not a prefix code

encode “CAB”, we would get the bit–string 0101. However, presented with the bit–string 0101, there is no
way to tell whether it represents “ABAB”, “CAB”, “ABC”, or “CC”. When decoding information encoded
using this representation, it is unclear whether the first 0 should be interpreted as an ‘A’ or as the first part
of a ‘C’. The coding in Figure 10 is unambiguous. The bit–string 010100 can only represent “ABBA”, and

A 0
B 10
C 110
D 111

Figure 10: A prefix code

the bit–string 1110111 can only represent “DAD” using this encoding. (Confirm this yourself.)

5.2.2 Building the Huffman tree

We will use a binary tree to construct Huffman codes for each character. First, we must figure out how often
each character occurs in the file by building a frequency table. Next, we create a forest of trees where each
tree is a single node containing a character and the frequency of that character.

Then we loop, until the forest contains just one tree:

13

1. Remove the two trees from the forest that have the smallest frequencies in their roots.

2. Create a new node, to be the root of a new tree with the two trees in step 1 as its children. The
frequency (actually, character count) of this parent node is set to the sum of the counts of the two
children.

3. Insert this new tree back into the forest.

5.2.3 Properties of Huffman Trees

Trees created using the above algorithm have several interesting properties.

1. Characters are at the leaves of the tree. The path to each leaf is necessarily unique, so the paths from
the root to a character can be used to code that character.

2. It can be proved that this method produces encodings that have the prefix property and that these
encodings produce the smallest possible file size for this class of encodings. Such a proof is beyond the
scope of this course, and interested students are encouraged to read Huffman’s original paper on the
topic.5

3. Since the frequency field of any internal node contains the sum of the frequencies of its two children,
the frequency field of the root node will contain the total number of characters in the file.

4. One can find the final length of an encoded file in bits by summing the frequency fields of all internal
nodes. Note that this length does not include the bits required to store the header structure.

5.2.4 Example of Building a Huffman Tree

As an example, suppose we had a file whose character frequencies are given by Figure 11. We encode it as

A 10
B 20
C 15
D 18
E 30
F 19
G 6
H 5

Figure 11: A frequency table

demonstrated in Figure 12. The Huffman codes we get by walking through the paths of the tree are given in
Figure 13. On an intuitive level, we can think of the “combining the first two trees in the forest” operation
as a penalty against those two trees — they were less frequent than the others, so they get an extra parent
node added as a result. This pushes them further away from the root node and creates a longer path to their
leaves, giving those (less frequent) characters a longer encoding. The rightmost trees are more frequent, and
so should only have another level of path added in front of them as a last resort.

5.2.5 Decompressing using the Huffman tree

Since the encoding is simply the path that was taken through the tree to reach the required leaf node, we
can start at the top and use the bits of the encoded stream to tell us whether to take the left or right branch.
Thanks to the prefix property, we know we’re done when we reach a leaf node (two NULL children), and we
can start decoding the next character by returning to the root of the Huffman tree and repeating.

5You can find it here as of the writing of this document: http://compression.graphicon.ru/download/articles/huff/huffman 1952 minimum-
redundancy-codes.pdf

14

The forest of single nodes:

H 5 G 6 A 10 C 15 D 18 F 19 B 20 E 30

After one step:

A 10 C 15 D 18 F 19 B 20 E 30

H 5 G 6

11

After two steps:

C 15 D 18 F 19 B 20 E 30

A 10

H 5 G 6

11

21

And so on..

The final tree:

A 10

H 5

11

21

G 6

E 30

F 19 B 20

39

C 15 D 18

33

7251

123

1

1

1

0

0 1 0

0

0

0

0

1

1

1

Figure 12: Huffman tree

A 000
B 111
C 100
D 101
E 01
F 110
G 0011
H 0010

Figure 13: Huffman coding for the example

15

