Computer Science 50 Week 0 Friday: September 4, 2009

Fall 2009
Scribe Notes

Andrew Sellergren

Contents

1 Introduction (0:00-5:00) 2
2 What Is Programming? (5:00-16:00) 2
3 Algorithms (16:00-25:00) 3
4 Scratch and Programming Constructs (25:00-72:00) 4



Computer Science 50 Week 0 Friday: September 4, 2009
Fall 2009 Andrew Sellergren
Scribe Notes

1 Introduction (0:00-5:00)

e This is CS 50.
e Lectures are available in MP3, Flash, and QuickTime formats here.
e Shuttleboy Voice! Soon you’ll be able to call 617-BUG-CS50 and find out

the next shuttle time!

2 What Is Programming? (5:00-16:00)

e One student offers: “Programming is telling the computer what to do.”
This is true, although we don’t mean at the high level as in point-and-
click, but rather providing a set of instructions so that underneath the
hood, the computer can operate.

e Qur first foray into programming will be in C and is meant to underwhelm
you:

#include <stdio.h>

int
main(int argc, char *argv[])
{
printf("hello, world!\n");
}

Don’t worry right now about what all this syntax means—in fact, it’s not
very intellectually interesting. Suffice it to say that we have to follow a set
of conventions in order to get the program to work. And, indeed, if we run
gec, a C compiler, on our hello.c file, we get no error messages (whew!)
and we get a working program named a.out. Now if we run the command
./a.out, we get the message hello, world! printed on the screen. Our
first program!

e As intended, this program is fairly underwhelming. Especially when com-
pared to something like this. Perhaps now you can understand why we
want to start you off with Scratch as opposed to C!

e This Scratch project was made by a former TF, but don’t think that only
TFs have the skill to make something entertaining like this. Check out
this project.

e So how do we go about making a program like this? The basic building
blocks of programs like this are algorithms. An algorithm is simply a set
of instructions which the computer can understand.


http://cs50.net/lectures
http://scratch.mit.edu/projects/cs50/37412
http://scratch.mit.edu/projects/lindorniel/40241

Computer Science 50 Week 0 Friday: September 4, 2009
Fall 2009 Andrew Sellergren
Scribe Notes

3 Algorithms (16:00-25:00)

e Let’s say we want to come up with an algorithm for putting our socks on
in the morning. We’ll write this algorithm in pseudocode, a not-quite pro-
gramming language that allows us to express human-readable instructions
that can easily be translated into real code. Our socks algorithm looks
like so:

let socks_on_feet =0
while socks_on_feet I= 2
open sock drawer
look for sock
if you find a sock then
put on sock
socks_on_feet++
look for matching sock
if you find a matching sock then
put on matching sock
socks_on_feet++
close sock drawer
else
remove first sock from foot
socks_on_feet--
else
do laundry and replenish sock drawer

e In step 1, we set a variable socks_on_feet to the number 0.

e In step 2, we enter a loop that will be repeated as long as the condition
(socks_on_feet does not equal 2) is true.

e Inside the loop, we open the sock drawer, look for a sock, and then enter
a condition:

— If a sock is found, put it on.
— Otherwise, do laundry and replenish sock drawer.
e Note that our code is indented in key places. Everything which is encap-
sulated in the if condition is indented to indicate so. The computer most

likely doesn’t care about this indentation but it makes the code easier for
us to read.



Computer Science 50 Week 0 Friday: September 4, 2009
Fall 2009 Andrew Sellergren
Scribe Notes

e This code has a bug. If only one sock is in the sock drawer (or none of the
socks has a matching partner), it will remain in the while loop forever.

e This is called an infinite loop. As you will see later, sometimes programs
we write will contain infinite loops. We will recognize these cases because
when we run the code, the computer will “hang”—it will keep running and
produce no output because it is stuck in a loop.

e It might seem obvious to us what to do in the case where there is only one
sock in the drawer, but a computer cannot make assumptions the way we
can.

e Therefore, our algorithms must be extremely specific and precise and ac-
count for all possible cases. Nothing can be assumed.

e Not only must our instructions be precise, but also the language in which
they are written must be precise. That is, we must follow the guidelines of
syntax for whatever programming language we write in. As we saw earlier,
the GCC compiler successfully created an executable program based on
the lines of code we wrote. If we hadn’t followed the syntax guidelines of
C, then the compiler would have spit out error messages.

e What exactly does the compiler do? It translates our human-readable in-
structions into machine-readable binary. Compilers are often operatiing-
system-specific, which is why you must buy a different version of Microsoft
Office for Macs and PCs. One of the appeals of the Java programming lan-
guage is that it’s cross-platform. The Virtual Terminal Room (VTR) we
use for Virtual Office Hours (VOHs) is written in Java because the com-
pany who created it (Elluminate) decided it would be more cost-effective
than writing two separate versions. There are, as you might expect, down-
sides to Java, however.

4 Scratch and Programming Constructs (25:00—72:00)

e Problem sets will be released on Fridays at 7 p.m. We encourage you to
start early so that you can take advantage of the many office hours during
the week.

e To start working with Scratch, you’ll need to download the program from
MIT’s website.

e Once you install Scratch and open it, take note of the following layout:

— On left, notice the puzzle pieces, which represent statements. Pro-
grams will be composed by putting puzzle pieces together in a par-
ticular order.

— At bottom right are sprites, or characters that will carry out your
instructions.


http://www.cs50.net/ohs/
http://info.scratch.mit.edu/Scratch_1.4_Download

Computer Science 50 Week 0 Friday: September 4, 2009
Fall 2009 Andrew Sellergren
Scribe Notes

— At top right is the stage, where the program will be carried out.

— To the left of the stage is the scripts area, where puzzle pieces must
be dragged and strung together.

We can recreate our very simple C program in Scratch using the “say”
block. Hail.sb is equivalent to hello.c, only a little more colorful.

If we use the “ask” block, we can take the user’s input, which will be
stored in the answer variable, and repeat it back.

Obviously, we’re taking baby steps, but realize that that’s what program-
ming is all about—taking very basic building blocks and creating functions
and more complicated programs.

Hai2.sb is slightly more complicated. The cat will say “O hai, world!”
for 1 second, wait 1 second, say it again for 1 second, wait 1 second, and
say it again for 1 second.

So far we’ve only made use of statements, which are direct imperatives
given to the computer. But if we want to introduce logic into our program,
we’ll need boolean expressions and conditions. Boolean expressions are
those that have only two possible values: true or false, yes or no, on or
off, 1 or 0. No matter how you say it, it’s a simple variable. Based on
these expressions, we can take different courses of actions using if-then
statements. You can also nest these conditions so you can take more than
two courses of actions.

Hai4.sb and Haib5.sb make use of conditions and boolean expressions.
In the first, the condition 1<2 always evaluates to true, so the cat meows
everytime we click the green flag. In the second, however, the condition
says, “pick a random number between 1 and 10 and if that number is
less than 6, have the cat meow.” This is what we call a pseudorandom
number generator. Although it seems simple here, the idea of forcing a
deterministic machine to non-deterministically generate a random number
is actually quite complicated. There is an entire branch of study devoted
to this very task. One theory holds that random numbers can be generated
from the white noise picked up by a microphone. In any case, the effect of
this pseudorandom number generator on our program is that the cat will
meow approximately half the time we click the green flag.

If we want our cat to meow multiple times, we can certainly just dupli-
cate the statements however many times we want. But this has several
disadvantages:

— It is resource-inefficient.

— It is tedious.

— It makes it difficult to change what the cat is saying.



Computer Science 50 Week 0 Friday: September 4, 2009
Fall 2009 Andrew Sellergren
Scribe Notes

Remember our goal is not just to accomplish a task, but to accomplish it
elegantly and efficiently.

e To that end, we can use loops when we wish to repeat a statement. In
Hai6.sb, we implement a loop which causes the cat to meow indefinitely.
In Hai7.sb, we combine a loop and a condition so that the cat will meow
only if we the mouse pointer is touching it or, in other words, if we are
petting it. In Hai8.sb, we add an extra condition so that the cat will
meow indefinitely, but will roar if we touch it with the mouse pointer.

e Variables are another useful programming construct. They allow us to
store information about the state of a program. For example, in the case
of the socks algorithm, the variable socks_on_feet stored the number of
socks Josh had on his feet. In Count1.sb, we set the variables counter
and increment it as the program runs. What problem could we run into?
If counter is only stored with 8 bits, then the maximum number that can
be stored in it is 255. No matter how many bits it is stored in, there will
be a maximum number that it can represent.

e Count2.sb is similar in spirit to Hai5.sb. Using a pseudorandom number
generator, the sheep will make its noise only about half the time.

e Arrays are essentially collections of related variables. In the game
FruitcraftRPG.sb, for example, an array is used to store the different
types of fruit which have been collected.

e Now is a good time to introduce the concept of threading. This is a fairly
complicated concept which doesn’t usually get introduced in the first week
of a computer science course, let alone in the first semester of computer
science training. However, let’s Scratch the surface of a threading discus-
sion.!

e Threading refers to the notion of multiple threads of code executing si-
multaneously. Formerly, when CPUs contained only a single core, multi-
threading was actually just an illusion: the CPU would switch back and
forth very quickly between processes so that the computer would appear
to be doing multiple things simultaneously. However, with the advent of
multicore processors, computers really can execute multiple instructions
simultaneously so long as the program has been coded this way. In Scratch,
threading is again an illusion. Two sprites moving simultaneously is not
really two sprites moving simultaneously, but rather Scratch moving one
sprite and switching very quickly to move the other sprite, and so on.

e In Movel.sb, we have a simple animation of a duck moving back and forth
across the screen, screaming and turning around every time it touches the
edge. This is a single thread.

1Yes, yes I did just make that joke.



Computer Science 50 Week 0 Friday: September 4, 2009
Fall 2009 Andrew Sellergren
Scribe Notes

e In Move2.sb, we achieve “multithreading,” at least in appearance. In
terms of programming, we have two different scripts associated with two
different sprites, a cat and a bird. For the cat, we begin by placing him
in a given spot on the stage and orienting him in a random direction.
Then we begin a loop whereby if he touches the bird, then the game ends;
otherwise, orient toward the bird and advance one step.

e For the bird, we again place and orient him and then move him around
the stage three steps at a time. Effectively, then, the cat is chasing the
bird until he catches him.

e In Hail0O.sb, we show another example of two scripts interacting with
each other, this time by means of an explicit variable named muted:

' when clicked

set muted |to m

play sound Sealion

think I for B secs

|;;it sacs

As you can tell from the code, the righthand script checks constantly or
“listens” to see if the spacebar has been pressed. If it has been pressed,
then the muted variable will be set to true and the sound introduced by
the lefthand script will stop playing.

e Try going through David.sb and dissecting the code which creates a box-
ing match between you and David!

e FEvents are another method of communicating between sprites. Marco.sb
leverages events to play the game of Marco Polo.

e Scratch also offers sensor boards which take user input in the form of
sound, light, and movement, as demonstrated by singer.sb, Masquerade. sb,
and davidwu.sb, respectively.

e Check out Oscartime.sb for another example of what you can do with
Scratch. And check out Dragon-drop.sb for an excellent demonstration
of dragon-drop programming]!



	Introduction (0:00--5:00)
	What Is Programming? (5:00--16:00)
	Algorithms (16:00--25:00)
	Scratch and Programming Constructs (25:00--72:00)

