
Computer Science 50
Fall 2009
Scribe Notes

Week 1 Friday: September 11, 2009
Andrew Sellergren

Contents

1 Announcements (0:00–7:00) 2

2 Back to C (7:00–34:00) 2

3 Conditions, Booleans, and Loops (34:00–72:00) 8

1

Computer Science 50
Fall 2009
Scribe Notes

Week 1 Friday: September 11, 2009
Andrew Sellergren

1 Announcements (0:00–7:00)

• This is CS 50.

• 0 new handouts.

• This is our last Friday class! For the rest of the semester, we’ll meet only
on Mondays and Wednesdays.

• Office hours for Problem Set 1 will begin this Sunday and will be held
Sunday through Thursday nights. Check the course website to find out
how many TFs will be on staff for a particular night.

• Supersections on Monday, Tuesday, and Wednesday. For this first week,
we’ll simply be holding large sections which anyone is welcome to attend.
For the weeks to follow, you’ll be attending your assigned section.

• Starting this Sunday, we’ll also hold the first of our code walkthroughs.
These are meant to help you get started with the standard editions of the
problem sets so as to avoid the question “Where do I begin?” at office
hours.1 These will also be filmed and put online.

• Problem Set 1! You’ll find that we hold your hand2 as you’re getting
bootstrapped with Linux and C. This won’t always be the case, so enjoy
the long PDF while you have it! This problem set consists of several
challenges:

– Implement a program to validate ISBN numbers.

– Implement a program to determine how a cashier should make change
with the minimum number of coins possible.

– Implement Mario’s pyramid!3

• Shuttleboy’s SMS feature has been revived! To use it, send a text message
to 41411 beginning with SBOY and followed by something like MEM and
QUA (the first three letters of your origin and destination stops). Some
fancy phone-switching equipment will route the message to our servers
where the origin and destinations will be parsed and the schedule lookup
is performed.

2 Back to C (7:00–34:00)

• We’ll pick up where we left off in writing C programs. Recall that we
learned how to SSH (using Terminal on a Mac or PuTTY on a PC) which
took us to the command prompt on the NICE servers. From there we

1“Begin at the beginning and go on till you come to the end: then stop.”
2Well, all of the staff but me will hold your hand. Sorry, I’m not a big fan of sweaty palms.
3Check out Super Mario Bros. in 5 minutes!

2

http://www.youtube.com/watch?v=V0iDmSTID18

Computer Science 50
Fall 2009
Scribe Notes

Week 1 Friday: September 11, 2009
Andrew Sellergren

opened up what David calls a “tiny little” program named Nano.4 At the
top of the program we had some comments and preprocessor directives
along with our declaration of the main method. And we ran GCC to
compile our code into an executable program.

• Let’s take a look again at the man page entry for printf:

int printf(const char *format, ...);

So const just means constant—don’t worry about it for now. char stands
for character. When we want multiple characters such as a word, a sen-
tence, a paragraph—more generally, a string—we’ll use the char * type.
The . . . stands for the space where we’ll put the optional arguments which
are substituted in for our placeholders. Recall our short list of escape
sequences from last time:

– \n

– \r

– \t

– \’’

– \\

• We went on to discuss data types. In Scratch, data types didn’t really
exist. Whether we wanted to store a number or a string, we didn’t have
to specify how it would be stored. Not so with C, however. This strict
data typing should be considered an advantage of C. It prevents you from
performing illegal operations on variables (e.g. arithmetic on a string) and
allows the compiler to optimize your program by making decisions about
where in memory your variables will be stored. Below are a few of the
built-in data types we have discussed:

– char A single character.

– double A 64-bit real value (something with a decimal point).

– float A 32-bit real value (with a decimal point).

– int A 32-bit integer.

† long, short, signed, unsigned

If you ever hear references to 32-bit or 64-bit architectures, know that it
has to do with the size of integers on those systems. More specifically, it
relates to the size of registers, small pieces of memory in the CPU. long is
the same as int, so if you want 64 bits, you need a long long. short goes
the other direction—it’s only 16 bits. signed and unsigned, respectively,

4Don’t blame David. He’s just doing his part not to deplete the planet’s rapidly shrinking
resource of funny. Thanks for protecting our natural resources, David.

3

Computer Science 50
Fall 2009
Scribe Notes

Week 1 Friday: September 11, 2009
Andrew Sellergren

refer to integers that can store negative values or not, respectively. An
unsigned can store numbers from 0 to 4 billion whereas a signed can
stored numbers from −2 billion to 2 billion.

• Here’s a quick glance at some of the format strings which you can provide
to printf:

– %c

– %d

– %e

– %E

– %f

– %s

– %u

– %x

Generally you’ll only be using %c for char, %d for int, and %s for char *.

• All the usual arithmetic operators are available to you:

– +

– -

– *

– /

– %

The % stands for modulus, which returns the remainder after division.
This is actually an incredibly useful trick, you might be surprised to find
out!

• Operators in computer science have a property called precedence. This
just refers to the order in which they are performed. When in doubt, you
can always enclose operations in parentheses to guarantee that they will
be executed before others. Don’t worry about memorizing the table from
the lecture notes, although it might be a useful thing to include on the
cheat sheet you get for exams! 5

• You might think that arithmetic operators are pretty straightforward, but
take a look at math3.c to find out why you’re DEAD WRONG:

5Or, if you prefer, you can come up with your own mnemonic just like Please Excuse My
Dear Aunt Sally. Here’s mine: ++sizeof<<!=. Catchy, huh?

4

Computer Science 50
Fall 2009
Scribe Notes

Week 1 Friday: September 11, 2009
Andrew Sellergren

/**
* math3.c
*
* Computer Science 50
* David J. Malan
*
* Computes and prints a floating-point total.
*
* Demonstrates loss of precision.
***/

#include <stdio.h>

int
main(int argc, char *argv[])
{

float answer = 17 / 13;
printf("%.2f\n", answer);

}

If we compile and run this program we get 1.00 as output. What went
wrong? Well, the way we’ve written it, the numbers 17 and 13 are being
stored as integers. If we instead write 17.0 and/or 13.0, then the compiler
will store them as floating-point values. We see this in math4.c. What
about the .2? With this syntax, we’re specifying the number of digits
after the decimal point that will be displayed. What if we wrote .98
instead? Well, 98 digits will be printed out, but most of the trailing ones
will be zeroes. The size of a float is the limiting factor! Don’t worry
about exactly how limiting, just realize that the limit exists and that
rounding errors are common in C (and every programming language for
that matter). Don’t compare floating-point values against each other if
exactness is paramount!

• Instead of writing 17.0 and 13.0, we can also explicitly cast the numbers 17
and 13 as float’s. We do this with the following syntax, seen in math5.c:

/**
* math5.c
*
* Computer Science 50
* David J. Malan
*
* Computes and prints a floating-point total.
*
* Demonstrates use of casting.
***/

5

Computer Science 50
Fall 2009
Scribe Notes

Week 1 Friday: September 11, 2009
Andrew Sellergren

#include <stdio.h>

int
main(int argc, char *argv[])
{

float answer = 17 / (float)13;
printf("%.2f\n", answer);

}

Casting will become useful when we want to convert between alphabetic
characters and numbers, as with ASCII. You’ll be introduced to this for
Problem Set 2.

• Among many others, there are some data types missing from C:

– bool

– string

How might we simulate a boolean variable in C? Well we could use only
the first bit of an int to store either 0 or 1. But we’d be wasting 31 bits
in doing so. We could use a char, which is only 8 bits. In fact, we’ve done
just that in CS 50’s library. Underneath the hood, a bool is a char and
a string is actually a char *. We’ve also made things easier on you by
implementing some very useful functions:

– char GetChar();

– double GetDouble();

– float GetFloat();

– int GetInt();

– long long GetLongLong();

– string GetString();

• Let’s reexamine the use of GetString() in hai3.c:

/**
* hai3.c
*
* Computer Science 50
* David J. Malan
*
* Says hello to whomever.
*
* Demonstrates use of CS 50’s library and standard input.
***/

6

Computer Science 50
Fall 2009
Scribe Notes

Week 1 Friday: September 11, 2009
Andrew Sellergren

#include <cs50.h>
#include <stdio.h>

int
main(int argc, char *argv[])
{

printf("State your name: ");
string name = GetString();
printf("O hai, %s!\n", name);

}

Notice that, unlike printf(), GetString() doesn’t take any input, but
it does produce output. GetInt() is used in a similar fashion in adder.c:

/**
* adder.c
*
* Computer Science 50
* David J. Malan
*
* Adds two numbers.
*
* Demonstrates use of CS 50s library.
***/

#include <cs50.h>
#include <stdio.h>

int
main(int argc, char *argv[])
{

// ask user for input
printf("Give me an integer: ");
int x = GetInt();
printf("Give me another integer: ");
int y = GetInt();

// do the math
printf("The sum of %d and %d is %d!\n", x, y, x + y);

}

Don’t forget that when we compile this, we need to include the -lcs50
flag or we’ll get the “undefined reference” error. Once we’ve done this, we
see that the program takes two inputs and then displays their sum. Notice
that we can embed the arithmetic expression x + y as an argument to the
printf function.

7

Computer Science 50
Fall 2009
Scribe Notes

Week 1 Friday: September 11, 2009
Andrew Sellergren

• Now we’ll challenge you to implement a program that converts a user’s
temperature input from Fahrenheit to Celsius. Use the GetFloat() func-
tion and the equation ◦C = (5/9) × (◦F − 32). Hopefully, after a few
minutes, your program looks something like the following:

1: /**
2: * f2c.c
3: *
4: * Computer Science 50
5: * David J. Malan
6: *
7: * Converts Fahrenheit to Celsius.
8: *
9: * Demonstrates arithmetic.
10: ***/
11:
12:
13: #include <cs50.h>
14: #include <stdio.h>
15:
16: int
17: main(int argc, char *argv[])
18: {
19: // ask user user for temperature in Fahrenheit
20: printf("Temperature in F: ");
21: float f = GetFloat();
22:
23: // convert F to C
24: float c = 5 / 9.0 * (f - 32);
25:
26: // display result
27: printf("%.1f F = %.1f C\n", f, c);
28: }

Notice that we write 9.0 because if we do integer division with 5 and 9,
we’ll always get 0 (the decimal part is rounded down). We write %.1f to
limit the values to one decimal place each.

3 Conditions, Booleans, and Loops (34:00–72:00)

• One quick sidenote: the use of // denotes a comment just as /* and */
do, but only for a single line of text. Again, we can’t stress enough the
importance of commenting your code! It’s useful to both us TFs and you
programmers—you’re not going to remember how it all works when you
come back to it years later.

• Let’s take a look at the use of conditions in conditions1.c:

8

Computer Science 50
Fall 2009
Scribe Notes

Week 1 Friday: September 11, 2009
Andrew Sellergren

1: /**
2: * conditions1.c
3: *
4: * Computer Science 50
5: * David J. Malan
6: *
7: * Tells user if his or her input is positive or negative (somewhat
8: * innacurately).
9: *
10: * Demonstrates use of if-else construct.
11: ***/
12:
13: #include <cs50.h>
14: #include <stdio.h>
15:
16: int
17: main(int argc, char *argv[])
18: {
19: // ask user for an integer
20: printf("Id like an integer please: ");
21: int n = GetInt();
22:
23: // analyze users input (somewhat inaccurately)
24: if (n > 0)
25: printf("You picked a positive number!\n");
26: else
27: printf("You picked a negative number!\n");
28: }

Notice we can omit the curly braces around our conditional statements so
long as they don’t exceed one line each. Indenting isn’t enough! If you
added another printf line after the first one in the else block, it will
always execute, even if the number is negative.

• Can you spot the bug in conditions1.c? Looks like we’re not properly
handling the case where the user provides the number 0. After all, it’s
neither positive nor negative. We can fix this by using an else if block
as well:

1: /**
2: * conditions2.c
3: *
4: * Computer Science 50
5: * David J. Malan
6: *
7: * Tells user if his or her input is positive or negative.

9

Computer Science 50
Fall 2009
Scribe Notes

Week 1 Friday: September 11, 2009
Andrew Sellergren

8: *
9: * Demonstrates use of if-else if-else construct.
10: ***/
11:
12: #include <cs50.h>
13: #include <stdio.h>
14:
15: int
16: main(int argc, char *argv[])
17: {
18: // ask user for an integer
19: printf("Id like an integer please: ");
20: int n = GetInt();
21:
22: // analyze users input
23: if (n > 0)
24: printf("You picked a positive number!\n");
25: else if (n == 0)
26: printf("You picked zero!\n");
27: else
28: printf("You picked a negative number!\n");
29: }

As you can see, this is a bug that’s very easily fixed, but it’s not necessarily
one you would’ve spotted right away, especially as you were writing the
code. That’s why we encourage you bang on your code—to really test it
before submitting to make sure you can’t break it with inputs you weren’t
expecting the user to provide.

• Here, the logic dictates that we have only three cases. Generally it’s a
good rule of thumb to not string too many else if blocks back to back.
We can, however, handle more than three cases, as we do in nonswitch.c
by using a few boolean operators, as well:

1: /**
2: * nonswitch.c
3: *
4: * Computer Science 50
5: * David J. Malan
6: *
7: * Assesses the size of users input.
8: *
9: * Demonstrates use of Boolean ANDing.
10: ***/
11:
12: #include <cs50.h>

10

Computer Science 50
Fall 2009
Scribe Notes

Week 1 Friday: September 11, 2009
Andrew Sellergren

13: #include <stdio.h>
14:
15: int
16: main(int argc, char *argv[])
17: {
18: // ask user for an integer
19: printf("Give me an integer between 1 and 10: ");
20: int n = GetInt();
21:
22: // judge users input
23: if (n >= 1 && n <= 3)
24: printf("You picked a small number.\n");
25: else if (n >= 4 && n <= 6)
26: printf("You picked a medium number.\n");
27: else if (n >= 7 && n <= 10)
28: printf("You picked a big number.\n");
29: else
30: printf("You picked an invalid number.\n");
31: }

Pretty straightforward. Certainly it works as it’s supposed to, but is
there a better way to do this from a style or readability standpoint?
You betcha!6 We do so using a construct called a switch, as we see in
switch1.c:

1: /**
2: * switch1.c
3: *
4: * Computer Science 50
5: * David J. Malan
6: *
7: * Assesses the size of users input.
8: *
9: * Demonstrates use of a switch.
10: ***/
11:
12: #include <cs50.h>
13: #include <stdio.h>
14:
15: int
16: main(int argc, char *argv[])
17: {
18: // ask user for an integer

6And yes, there’s always a better design. Your program will never quite be perfect. Le
sigh.

11

Computer Science 50
Fall 2009
Scribe Notes

Week 1 Friday: September 11, 2009
Andrew Sellergren

19: printf("Give me an integer between 1 and 10: ");
20: int n = GetInt();
21:
22: // judge users input
23: switch (n)
24: {
25: case 1:
26: case 2:
27: case 3:
28: printf("You picked a small number.\n");
29: break;
30:
31: case 4:
32: case 5:
33: case 6:
34: printf("You picked a medium number.\n");
35: break;
36:
37: case 7:
38: case 8:
39: case 9:
40: case 10:
41: printf("You picked a big number.\n");
42: break;
43:
44: default:
45: printf("You picked an invalid number.\n");
46: }
47: }

Functionally, this program is identical to nonswitch.c. Arguably, though,
it’s more readable, albeit longer. It’s probably a toss-up between these
two versions, but so long as your code is pret-printed and reasonably well-
stylized, we won’t be picky. Ultimately we’ll post a style guide on the
course website which should give some useful starting points.

• In the above program, each of the case statements is compared with the
variable provided to switch at the beginning of the block. If the case
matches the variable, then its lines of code are executed. Notice that the
cases lump together unless we explicitly type break. Thus 1, 2, and 3 fall
together, 4, 5, and 6 fall together, and 7, 8, 9, and 10. This is a common
source of bugs in programs! Don’t forget the break statements!

• switch2.c is similar to the above except that it switches on a char rather
than an int.

• Now let’s take a look at loops. The syntax for loops is exemplified below:

12

Computer Science 50
Fall 2009
Scribe Notes

Week 1 Friday: September 11, 2009
Andrew Sellergren

for (int i = 0; i < 200; i++) {...}

Before the first semicolon, we are initializing a variable which will be
our iterator or counter. Between the two semicolons, we’re providing
a threshold which, once reached, will cause the loop to be terminated.
Finally, we provide code to update our iterator. So each time the loop
executes, the variable i will be incremented by 1 until it reaches 200. We
can do some interesting things with this. We could print out asterisks or
the actual value of our iterator. Realize that the last value of i will be
199 because it’s the highest value which is still strictly less than 200.

• What if we change our update code to i--? Will it go forever in the same
direction? At some point, we’ll run out of bits and the value will flip from
negative to positive. If we update exponentially rather than geometrically
(i = i * 2) and set our threshold as i < 0, our program will actually
come to an end quickly (once it exceeds the largest possible positive value
that can be stored in an int and it flips to negative).

• One use of this might be a progress indicator, as we’ve implemented in
progress1.c:

1: /**
2: * progress1.c
3: *
4: * Computer Science 50
5: * David J. Malan
6: *
7: * Simulates a progress bar.
8: *
9: * Demonstrates sleep.
10: ***/
11:
12: #include <stdio.h>
13: #include <unistd.h>
14:
15: int
16: main(int argc, char *argv[])
17: {
18: // simulate progress from 0% to 100%
19: for (int i = 0; i <= 100; i++)
20: {
21: printf("Percent complete: %d%%\n", i);
22: sleep(1);
23: }
24: printf("\n");
25: }

13

Computer Science 50
Fall 2009
Scribe Notes

Week 1 Friday: September 11, 2009
Andrew Sellergren

• The %% is the escape syntax to print a literal percent character. sleep()
is a function which simply pauses execution of the program for a given
number of seconds. More interesting than this, though, is progress2.c
which actually implements a form of animation:

1: /**
2: * progress2.c
3: *
4: * Computer Science 50
5: * David J. Malan
6: *
7: * Simulates a better progress bar.
8: *
9: * Demonstrates \r, fflush, and sleep.
10: ***/
11:
12: #include <stdio.h>
13: #include <unistd.h>
14:
15: int
16: main(int argc, char *argv[])
17: {
18: // simulate progress from 0% to 100%
19: for (int i = 0; i <= 100; i++)
20: {
21: printf("\rPercent complete: %d%%", i);
22: fflush(stdout);
23: sleep(1);
24: }
25: printf("\n");
26: }

By using a carriage return (\r) instead of the newline character (\n), the
next value overwrites the previous value on our screen. We could do this
to animate the severe loss Harvard suffered to its endowment. Note that
we’ll have to use a long long to store the value of the endowment since
it’s larger than the 4 billion max of an int.

• One thing we failed to mention earlier was the use of the fflush function.
Even when we give the computer an explicit instruction, it might actually
put it off for the time being in order to save resources. This is often the
case with the printf function, which won’t immediately update standard
out. Instead, it will store values in a buffer until the buffer is full and only
then will it spit out the value. The call to fflush shortcuts this and forces
standard out to be updated immediately. Also, to use the sleep function,
we’ll need to include the unistd.h library. We know which library to

14

Computer Science 50
Fall 2009
Scribe Notes

Week 1 Friday: September 11, 2009
Andrew Sellergren

include by checking its man page. Just type man and then the name of the
function at the command line to find out more about a function.

• Two other types of loops are while and do while. while takes a simple
terminating condition as its argument. When you use it, you must be
careful to include the update code within the while block and initialize
the iterator before the block.

• do while has a particular use. The while block comes after the do block,
and, as you might expect, executes after it as well. This is useful when
we want to guarantee that some block of code be executed at least once
no matter what. One circumstance in which this comes in handy is for
taking user input. Take positive1.c for example:

1: /**
2: * positive1.c
3: *
4: * Computer Science 50
5: * David J. Malan
6: *
7: * Demands that user provide a positive number.
8: *
9: * Demonstrates use of do-while.
10: ***/
11:
12: #include <cs50.h>
13: #include <stdio.h>
14:
15: int
16: main(int argc, char *argv[])
17: {
18: int n;
19:
20: // loop until user provides a positive integer
21: do
22: {
23: printf("I demand that you give me a positive integer: ");
24: n = GetInt();
25: }
26: while (n < 1);
27: printf("Thanks for the %d!\n", n);
28: }

Obviously, we want to want to ask the user for his input at least once no
matter what. Now we’ll either continue to execute the loop (which will
ask the user for input again) if the user didn’t provide the input we were
looking for (in this case a positive integer). Notice if we put in completely

15

Computer Science 50
Fall 2009
Scribe Notes

Week 1 Friday: September 11, 2009
Andrew Sellergren

invalid input, though, like a string, we’ll get a different reprompt. This is
because of the error-checking we have built in to GetInt(). Don’t rely on
this though!

• positive2.c implements the exact same program but with the use of a
boolean variable:

1: /**
2: * positive2.c
3: *
4: * Computer Science 50
5: * David J. Malan
6: *
7: * Demands that user provide a positive number.
8: *
9: * Demonstrates use of bool.
10: ***/
11:
12: #include <cs50.h>
13: #include <stdio.h>
14:
15: int
16: main(int argc, char *argv[])
17: {
18: bool thankful = false;
19:
20: // loop until user provides a positive integer
21: do
22: {
23: printf("I demand that you give me a positive integer: ");
24: if (GetInt() > 0)
25: thankful = true;
26: }
27: while (thankful == false);
28: printf("Thanks for the positive integer!\n");
29: }

Be careful. If we were to write thankful = false as our while condition,
then we’re not comparing the value of thankful to the value false, we’re
actually assigning the value of false to thankful. So no matter what
input we provide, it will always thank us for the positive integer.

• positive3.c is a final example that demonstrates the use of the ! or bang
operator. This inverts the value of whatever expression comes after it. So
if we write while (!thankful), it reads as “while not thankful,” which
actually makes for pretty readable code.

16

Computer Science 50
Fall 2009
Scribe Notes

Week 1 Friday: September 11, 2009
Andrew Sellergren

• If you haven’t already, be sure to play around with Google Earth. How is
this relevant to CS 50? Toward the end of the semester, you’ll be asked to
implement a “mashup.” You’ll be required to use the Application Program
Interfaces (APIs) provided by Google. This is their library of code along
with documentation which you can plug in to your own programs. An
example of a mashup is one which David threw together which took all
of the home addresses of those who have submitted Problem Set 0 so far
in a comma-separated values (CSV) file, converts it to a KML file using
a PHP script (which is surprisingly readable now that you know some C)
and plugs it in to Google Maps. Now we can see you!

17

http://earth.google.com/download-earth.html

	Announcements (0:00–7:00)
	Back to C (7:00–34:00)
	Conditions, Booleans, and Loops (34:00–72:00)

