
COMPUTER SCIENCE 51
Spring 2010

http://cs51.seas.harvard.edu

Greg Morrisett

What’s 51 about?

Programming isn’t hard.

Programming well is very hard.

We want you to write code that is:
–  Reliable, efficient, readable, testable,

provable, maintainable… beautiful!

Expand your problem-solving skills:
–  Recognize problems & map them onto the

right languages, abstractions, & algorithms.

Prime Directive

Good programmers are lazy.
– Never write the same code twice.
– Reuse libraries.
– Keep interfaces small & simple.
– Pick a language that makes writing &

maintaining the code easy.

Language & Code

•  Language & abstractions matter.
– Try formulating an algorithm to multiply

Roman numerals.

•  Often, don’t have the luxury of
choosing the language.
– We can still conceptualize & prototype

using the right language abstractions.
–  If we understand relationships between

linguistic abstractions, we can realize the
code in any language.

Better Example: Red-Black Trees

•  A particular kind of balanced search tree
[Guibas & Sedgewick 1978].

7

4

1

11

5 15

12 17
3 0

Key Invariants:

7

4

1

11

5 15

12 17
3 0

1. No red node has a red child
2. Every path from root has same number of black nodes

Must Rebalance

25

7

4

1

11

5 15

12 17
3 0

Must Rebalance

25

7

4

1

12

5 17

15
3 0

11

ML Code for Insert

fun balance((Blk,T(Red,T(Red,a,x,b),y,c),z,d)
 |(Blk,T(Red,a,x,T(Red,b,y,c)),z,d)

 |(Blk,a,x,T(Red,T(Red,b,y,c),z,d))

 |(Blk,a,x,T(Red,b,y,T(Red,c,z,d)))) =
 T(Red,T(Blk,a,x,b),y,T(Blk,c,z,d))

 | balance x = T x

fun ins x Empty = T(R,Empty,x,Empty)
 | ins x (T(color,a,y,b)) =

 if x <= y then balance(color,ins x a,y,b)
 else if x > y then balance(color,a,y,ins x b)

C code (part 1/4)
void rb_insert(Tree T, node x) { !
 tree_insert(T, x); !
 x->colour = red; !
 while ((x != T->root) && (x->parent->colour == red)) { !
 if (x->parent == x->parent->parent->left) { !

! !y = x->parent->parent->right;!
 if (y->colour == red) { !

! !x->parent->colour = black;!
 y->colour = black;!
 x->parent->parent->colour = red;!

! x = x->parent->parent; !
 } else {!

! if (x == x->parent->right) {!
 x = x->parent; !

! left_rotate(T, x); !
 } !
 x->parent->colour = black;!
 x->parent->parent->colour = red;!
 right_rotate(T, x->parent->parent); !
 } !
 } else {!

! . . . /* repeat above with red/black swapped */!

C code (part 2/4)
void left_rotate(Tree T, node x) { !
 node y; !
 y = x->right; !
 x->right = y->left;!
 if (y->left != NULL) !
 y->left->parent = x; !

 y->parent = x->parent; !
 if (x->parent == NULL) !
 T->root = y; !
 else if (x == (x->parent)->left) !
 x->parent->left = y; !
 else !

 x->parent->right = y; !
 y->left = x; !
 x->parent = y; !
}!

/* repeat above for right_rotate with “obvious” changes */!

A Key Outcome

•  Master Key Linguistic Abstractions:
• procedural abstraction
• control: iteration, recursion, pattern

matching, laziness, exceptions, events,
threads, continuations

• encapsulation: closures, ADTs, objects,
modules

• Parameterization: higher-order
procedures, modules; classes,
inheritance

More Outcomes

•  Exposure to software eng. techniques:
– modular design.
– unit tests, integration tests.
– critical code reviews.

•  Exposure to abstract models:
– models for design & communication.
– models & techniques for proving

correctness of code.
– models for space & time.

