COMPUTER SCIENCE 51
Spring 2010
http://csd1.seas.harvard.edu

Greg Morrisett

102 {00 1Sy

computer)
science 51 /\

What's 51 about?

Programming isn’t hard.
Programming well is very hard.

We want you to write code that is:

— Reliable, efficient, readable, testable,
provable, maintainable... beautiful!

Expand your problem-solving skills:
— Recognize problems & map them onto the

right languages, abstractions, & algorithms.

00 100 1S

Prime Directive

Good programmers are lazy.
— Never write the same code twice.
— Reuse libraries.
— Keep interfaces small & simple.

— Pick a language that makes writing &
maintaining the code easy.

00 100 1S

Language & Code

« Language & abstractions matter.

— Try formulating an algorithm to multiply
Roman numerals.

« Often, don't have the luxury of
choosing the language.

— We can still conceptualize & prototype
using the right language abstractions.

— |If we understand relationships between
inguistic abstractions, we can realize the

code in any language.

‘ Better Example: Red-Black Trees

« A particular kind of balanced search tree
[Guibas & Sedgewick 1978].

jo§
SR
@/é @G

00 100 1S

Key Invariants:

1. No red node has a red child
2. Every path from root has same number of black nodes

@/b @
+

Must Rebalance

Must Rebalance

ML Code for Insert

fun balance ((Blk,T(Red,T(Red,a,x,b),vy,c),z,d)

(Blk,T(Red,a,x,T(Red,b,vy,c)),z,d)
(Blk,a,x,T(Red,T(Red,b,vy,c),z,d))
(Blk,a,x,T(Red,b,vy,T(Red,c,z,d)))) =

T(Red,T(Blk,a,x,b),v,T(Blk,c,z,d))
| balance x = T X

fun ins x Empty = T(R,Empty, x, Empty)
| 1ns x (T (color,a,y,b)) =
if x <= y then balance(color,ins x a,y,b)

else 1f x > y then balance(color,a,y,1ins x b)

00 100 1S

C code (part 1/4)

void rb insert(Tree T, node x) {
tree insert(T, x);
x->colour = red;

while ((x != T->root) && (x->parent->colour == red)) {
if (x->parent == x->parent->parent->left) {

y = x->parent->parent->right;
if (y->colour == red) {
x->parent->colour = black;
y->colour = black;
xXx->parent->parent->colour = red;
X = X->parent->parent;
} else {
if (x == x->parent->right) {
X = X->parent;
left rotate(T, x);
}
Xx->parent->colour = black;
X->parent->parent->colour = red;
right rotate(T, x->parent->parent);

}
} else {

/* repeat above with red/black swapped

00 100 1S

:>/°>o

C code (part 2/4)

void left rotate(Tree T, node x) {

node y;

y = x->right;

x->right = y->left;

if (y->left != NULL)
y->left->parent = x;

y->parent = x->parent;

if (x->parent == NULL)
T->root = y;

else if (x == (x->parent)->left)
xXx->parent->left = y;

else

x->parent->right = y;
y->left = x;

X->parent = y;

/* repeat above for right rotate with

“obvious” changes */

00 100 1S

A Key Outcome

* Master Key Linguistic Abstractions:
» procedural abstraction

« conftrol: iteration, recursion, pattern
matching, laziness, exceptions, events,
threads, confinuations

« encapsulation: closures, ADTs, objects,
modules

« Parameterization: higher-order
procedures, modules; classes,
iInheritance

00 100 1S

More Outcomes

» Exposure to software eng. technigues:
— modular design.
— unit fests, integration tests.
— critical code reviews.

« Exposure to abstract models:
— models for design & communication.

— models & techniques for proving
correctness of code.

