Computer Science 50 Week 3 Monday: September 21, 2009
Fall 2009 Andrew Sellergren
Scribe Notes

Contents

1 Announcements (0:00-11:00) 2
2 Cryptography (3:00-15:00) 2
3 Asymptotic Notation (15:00-35:00) 3
4 Searching, Sorting, and Recursion (35:00—64:00) 5

Computer Science 50 Week 3 Monday: September 21, 2009
Fall 2009 Andrew Sellergren
Scribe Notes

1 Announcements (0:00-11:00)

This is CS 50.
1 new handout.

If you haven’t already, please turn in your sensor boards from Problem
Set 0.

Problem Set 2 has been released.

For questions which don’t require sharing a large portion of code or gen-
erally giving away too much, feel free to post them to the Bulletin Board.
By default, when you login, you will be assigned the name “student” to
keep you anonymous, but you can change this if you like.

Happy birthday to Cansu and Mike T.!
Don’t make your password 12345.

Check the website for the Office Hours schedule. Before you come to Office
Hours with a question like “Where do I begin?” on the problem set, be
sure to watch Marta’s walkthrough. We do move quickly in this course,
but once you start really plugging away at it (learning by doing), we think
you’ll be surprised at how capable you are.

2 Cryptography (3:00—15:00)

You’ll find that even a field of computer science which appears complex is
actually composed of simple steps.

As a result, of course, some cryptographic algorithms, like the Caesar
cipher, for example, are vulnerable to being cracked. How would you go
about cracking a password encrypted with the Caesar cipher? You could
do a frequency analysis, which would map the most commonly occurring
letters in the ciphertext to the most commonly occurring letters in the
alphabet. Of course, you could also just use brute force and try all keys 1
through 26.

If we want to step it up a notch, then, we might implement the Vigenére
cipher. Instead of rotating by a single number, we rotate each character
in the message by a different number derived from a key word. If the key
isn’t as long as the plaintext message, then just repeat the key word as
necessary.

For example, if p = HELLO,WORLD and k = FOOBAR, then we get ¢
by doingH+ F=M,E + O =S, L 4+ O = 7Z, etc., to come up with ¢ =
MSZMO,NTFZE. We can formalize this like so: ¢; = (p; + k;) mod 26.

http://www.cs50.net/bb
http://www.youtube.com/watch?v=K95SXe3pZoY
http://www.cs50.net/ohs/
http://www.cs50.net/psets/

Computer Science 50 Week 3 Monday: September 21, 2009
Fall 2009 Andrew Sellergren
Scribe Notes

o Whereas the keyspace, the number of possible keys, for Caesar is only 26,
the keyspace for Vigenere is 26, where n is the number of letters in our
keyword.

e Of course, neither is Vigenere foolproof. To brute force crack it, we would
need only try all possible 1-letter keys, followed by all possible 2-letter
keys, and so on. With the power of today’s CPUs, this is actually not as
slow a process as we might hope.

e Another step up is the DES algorithm, which is still used to store pass-
words on many Linux systems. It offers 72 quadrillion possible keys via a
complex formula which we won’t go into here. Even so, it can be cracked!

e Nowadays, the RSA algorithm is widely used, from browsers to ATMs.
Ultimately, it is based on a simple assumption: factoring a very large
number into two very large primes is so computationally intensive as to
be near-impossible. In other words, it couldn’t be done in the span of a
human lifetime, for example.

3 Asymptotic Notation (15:00-35:00)

e Recall from Week 0 the Phonebook Example, in which we searched for
Mike Smith using binary search or “divide and conquer.” Each time we
divided the phonebook in half, we were cutting the problem in half, so
what was once a 1024-step problem (if we had flipped through every single
page) became a 10-step problem. And if the phonebook had been 4 billion
pages long, the problem would’ve only required 32 steps to solve (232 ~ 4
billion).

e In general, we’ll use the variable n to denote the size of the problem, or
the number of steps it requires to solve. Each step is roughly accomplished
with a single CPU cycle (assuming it has a single core).

e So when we were counting the number of students in the lecture hall, how
much faster was it to use the algorithm whereby you students paired off
and added your totals versus David standing at the front counting one at
a time? Well, if you think about it, each step that David executed was
only taking care of 1/n of the problem whereas each step of the pairing
algorithm was taking care of 1/2 of the problem.

e Let’s take a look at a graph of running time versus n for these algorithms:

Computer Science 50 Week 3 Monday: September 21, 2009
Fall 2009 Andrew Sellergren
Scribe Notes

20

-+ n
@ logn
- n2

/
e

o 4 . . .
0 33 65 98 130

The n vs. n line represents David’s counting algorithm. The n/2 vs.
n line represents a counting-by-two algorithm. Finally, the logn vs. n
graph represents the pairing algorithm. Notice the dramatic difference in
running times.

e If one more student comes into the room, it takes David one more step,
but it takes you roughly the same number of steps. If 200 to 300 students
entered the room, it will take David roughly twice as many steps. It will
take you, on the other hand, only one more step.

e Just for reference, algorithms for factoring large prime numbers generally
run in exponential time.

e To standardize our discussions of running times, let’s introduce the fol-
lowing symbols: O, O, €. O, or big O, denotes the worst-case running
time, 2, or omega, denotes the best-case running time. If both happen to
be the same for a given algorithm, then we bring in O, or theta.

e So, for example, David’s counting algorithm takes both at best and at
worst 1 steps. So we can say it’s in O(n). If we talk about an algorithm
for searching for a certain student named Mike and we search the students
one by one as they walk in, then in the worst case Mike will be the last
student through the door and in the best case Mike will be the first student
through the door. So this search algorithm is in O(n) and Q(1). We call
the latter “constant time.”

Computer Science 50 Week 3 Monday: September 21, 2009
Fall 2009 Andrew Sellergren
Scribe Notes

If we look back at the Phonebook Example, searching one page at a time
is a linear algorithm. In the worst case, the entry we’re looking for is
on the last page of the phonebook, so this search algorithm is in O(n).
Comparatively, our “divide and conquer” approach, which boils down to
binary search, is in O(logn).

4 Searching, Sorting, and Recursion (35:00-64:00)

On the board are two arrays of integers covered by pieces of paper.
Bring down a volunteer and ask him to find the value 3 in the top array.

Edward looks behind pieces of paper “randomly” and finds 3 on the second
try. His method is in ©(1) and O(n).

How could we improve on this? Well, we could sort the array to begin
with. In the Phonebook Example, this was already done for us. When we
flipped to the middle and got to the M’s, we knew that S for Smith would
be to the right.

The top array is clearly not sorted. But let’s give Edward the assumption
that the bottom array is sorted and ask him to find the number 50.

Well because Edward apparently has supernatural powers, he found it on
the second try once again. When we press him to find the number 52,
we find that we can formalize his algorithm a little better. He checked
the rightmost number and then the leftmost number to know whether the
array was sorted highest to lowest or lowest to highest. Then he planned
to iterate from left to right until he found the number. This algorithm is
then still in O(n).

Let’s write down linear search in pseudocode:

on input n:
for each element i:
if 1 ==
return true.
return false.

In plain English, just look at every element and see if it’s the right one.
If you never find it, return false.

Binary search is a direct application of the “divide and conquer” approach.
In pseudocode, it looks like this:

on input array([0], ... , array[n - 1] and k:
Let first = 0.
Let last = n - 1.

Computer Science 50 Week 3 Monday: September 21, 2009
Fall 2009 Andrew Sellergren
Scribe Notes

While first <= last:
Let middle = (first + last) / 2
If k < array[middle], then let last = middle - 1
Else if k < array[middle] then let first = middle + 1
Else return true.
Return false.

This is just a written out version of what we were doing with the phone-
book: look in the middle and go left or right. So in our bottom array,
if we’re looking for 50, we look in the middle, find the number 101 and
then throw away the right half of the array since all those numbers will be
larger than 101 and thus larger than 50. Then we focus on the remaining
left half of the array and repeat the process. This algorithm is a consid-
erable improvement on Edward’s since as n increases, binary search will
not take anywhere near as long as Edward’s search.

e Incidentally, the bottom array consists of all the CS courses you’ll be
qualified to take after or before CS 50: 1, 50, 51, 61, 105, 121, 124, 171.

e To walk through the pseudocode, think of first as David’s left finger
and last as David’s right finger. At the beginning, his left points to the
leftmost number and his right points to the rightmost number. Then we
set middle to be the middle number in the array. If the number we’re
looking for is less than this number, then we set last to be middle - 1,
or in other words David’s right points now to the number to the left of
the middle. Our new array, then, is just the left half of the original array.

e When we say “repeat” in our pseudocode, we might actually be referring
to a programming concept known as recursion, whereby a function invokes
itself albeit on a smaller piece of the puzzle.

e Let’s take a look at sigmal.c for a summation program which doesn’t
employ recursion:

[3Kk ok stk sk ok ks ok ok sksk ok s ok stk sk sk sk sk sk sk ok sk sk ok stk sk sk ok sksk sk sk ook stk sk ok stk sk ok sk sk sk sk ok sksk ok ok skskok ok ok ok ok
* sigmal.c

Computer Science 50
David J. Malan

*
*
*
*
* Adds the numbers 1 through n.
*

* Demonstrates iteration.

***/

#include <csb50.h>
#include <stdio.h>

Computer Science 50 Week 3 Monday: September 21, 2009
Fall 2009 Andrew Sellergren
Scribe Notes

// prototype
int sigma(int);

int
main(int argc, char *argv[])
{
// ask user for a positive int
int n;
do
{

printf ("Positive integer please: ");
n = GetInt(Q);

}

while (n < 1);

// compute sum of 1 through n
int answer = sigma(n);

// report answer
printf ("%d\n", answer);

/%
* int
sigma(int m)

* *

* Returns sum of 1 through m; returns O if m is not positive.

*/

int
sigma(int m)
{
// avoid risk of infinite loop
if (m < 1)
return 0O;

// return sum of 1 through m

int sum = 0;

for (int 1 = 1; i <= m; i++)
sum += 1i;

return sum;

Computer Science 50 Week 3 Monday: September 21, 2009
Fall 2009 Andrew Sellergren
Scribe Notes

This program simply implements the sum of numbers 0 through n, where n
is a number input by the user. In mathematical notation: Z?:o i. Notice
that we’re returning 0 if the number provided to sigma is less than 1.
Although we could print out a message to indicate this, the program itself
can’t understand a side effect like this. It needs a return value. In this
case, the 0 represents a sentinel which our main method can respond to
as necessary.

e Notice also at the top that our prototype declaration of the sigma function
is necessary because we call sigma from main and yet define sigma only
at the bottom of the program. We don’t need to name the arguments
provided to sigma, only to give their type—in this case, int.

e Notice that we declare sum outside the scope of the loop so that later on
we can access its value and return it.

e If we compile and run sigmal, we see that it works perfectly correctly.
But, interestingly, we can implement the same functionality in an entirely
different way using recursion. Check out sigma?2.c:

[ok ok stk ok stk ok stk s kb sk ok sk sk ok sk stk stk stk sk ok sk sk ok sk sk kst stk stk kol sk ok sk ok sk stk stk ko sk ook sk o sk o
* sigma2.c

Computer Science 50
David J. Malan

*
*
*
*
* Adds the numbers 1 through n.
*
* Demonstrates recursion.

stk sk ko o sk sk sk sk sk sk sk sk sk ok ok sk sk sk sk sk ok sk sk sk ko sk sk sk sk sk sk sk sk sk sk koo sk sk sk sk sk sk sk sk sk sk ko ok sksk sk sk sk sk sk sk kokok sk sk sk sk sk ok sk k /
#include <csb50.h>

#include <stdio.h>

// prototype
int sigma(int);

int
main(int argc, char *argv[])
{
// ask user for a positive int
int n;
do
{

printf ("Positive integer please: ");

Computer Science 50 Week 3 Monday: September 21, 2009
Fall 2009 Andrew Sellergren
Scribe Notes

n = GetInt();
}
while (n < 1);

// compute sum of 1 through n
int answer = sigma(n);

// report answer
printf ("%d\n", answer);

* int
sigma(int m)

* ¥

* Returns sum of 1 through m; returns O if m is not positive.

*/

int
sigma(int m)
{
// base case
if (m <= 0)
return O;

// recursive case
else
return (m + sigma(m-1));

Notice that our main method is identical to that of sigmal.c. Of course,
we don’t want to induce an infinite loop by implementing a function which
calls itself over and over again indefinitely. That’s what the base case is
for—to provide an exit. The rest of the magic takes place in the recursive
case, in which sigma is called again. Think about it: if we want the sum
of m, we can reduce that to be the sum of m and all the numbers less than
m — 1. That sum, then, is m — 1 plus all the numbers less than m — 2. So
each time we call sigma, we're passing it one number less than our current
number. Only once the number we pass to sigma is less than or equal to
0 do the functions start returning and the answer starts bubbling up.

e What’s the catch? Well, if we start putting in very large numbers as our
input, sigmal will return just fine, but sigma2 will quit unexpectedly with
a segmentation fault. This is essentially a memory error and, no, it’s not
okay to turn in programs that do this! When a program of yours does this,

Computer Science 50 Week 3 Monday: September 21, 2009
Fall 2009 Andrew Sellergren
Scribe Notes

a file called core will be created in your directory. This file will contain
the contents of RAM when your program failed.

e In sigma2, every time the sigma function is called, a new frame, or a new
chunk of memory, is pushed onto the stack. If we do this too many times,
we’ll run out of memory. This is when we get the infamous segmentation
fault. We’ll talk Wednesday about how to work around it!

10

	Announcements (0:00--11:00)
	Cryptography (3:00--15:00)
	Asymptotic Notation (15:00--35:00)
	Searching, Sorting, and Recursion (35:00--64:00)

