
This is CS 50.
Harvard College Fall 2009

0 < 15

Problem Set 1: C

due by 7:00pm on Fri 9/18

Be sure that your code is thoroughly commented
to such an extent that lines’ functionality is apparent from comments alone.

If you have any questions or trouble, email help@cs50.net!

Do take advantage of Week 2’s supersections and office hours.

And don’t forget about this problem set’s walkthrough on
Sun 9/20 (which will be filmed for those who cannot attend)!

Goals.

• Get comfortable with Linux.
• Start thinking more carefully.
• Solve some problems in C.

Recommended Reading.

• Sections 1 – 7, 9, and 10 of http://www.howstuffworks.com/c.htm.
• Chapters 1 – 5, 9, and 11 – 17 of Absolute Beginner’s Guide to C.
• Chapters 1 – 6 of Programming in C.

This is CS 50.
Harvard College Fall 2009

1 < 15

Academic Honesty.

All work that you do toward fulfillment of this course’s expectations must be your own unless
collaboration is explicitly allowed (e.g., by some problem set or the final project). Viewing or copying
another individual’s work (even if left by a printer, stored in an executable directory, or accidentally
shared in the course’s virtual terminal room) or lifting material from a book, website, or other source—
even in part—and presenting it as your own constitutes academic dishonesty, as does showing or giving
your work, even in part, to another student.

Similarly is dual submission academic dishonesty: you may not submit the same or similar work to this
course that you have submitted or will submit to another. Nor may you provide or make available
solutions to problem sets to individuals who take or may take this course in the future. Moreover,
submission of any work that you intend to use outside of the course (e.g., for a job) must be approved
by the staff.

You are welcome to discuss the course’s material with others in order to better understand it. You may
even discuss problem sets with classmates, but you may not share code. In other words, you may
communicate with classmates in English, but you may not communicate in, say, C. If in doubt as to the
appropriateness of some discussion, contact the staff.

You may even turn to the Web for instruction beyond the course’s lectures and sections, for references,
and for solutions to technical difficulties, but not for outright solutions to problems on problem sets or
your own final project. However, failure to cite (as with comments) the origin of any code or technique
that you do discover outside of the course’s lectures and sections (even while respecting these
constraints) and then integrate into your own work may be considered academic dishonesty.

All forms of academic dishonesty are dealt with harshly.

Grades.

Your work on this problem set will be evaluated along three primary axes.

Correctness. To what extent is your code consistent with our specifications and free of bugs?
Design. To what extent is your code written well (i.e., clearly, efficiently, elegantly, and/or logically)?
Style. To what extent is your code readable (i.e., commented and indented with variables aptly named)?

This is CS 50.
Harvard College Fall 2009

2 < 15

Getting Started.

 For this problem set, we’re going to have you use nice.fas.harvard.edu, FAS’s “New
Instructional Computing Environment,” on which you should, per Problem Set 0’s direction, have
an account (i.e., a username and password). Housed in the basement of the Science Center (much
like you may be this term), this environment is a cluster of servers running Linux, each of which
“mounts” your “home directory,” storage space that FAS has allocated to you, so that you can
access your files on any server in the cluster. Not only can you use this account to send and
receive email (via an address of the form username@fas.harvard.edu), you can also use it to,
oh, write source code, compile source code into object code, and run programs you’ve written!

 To “SSH to nice.fas.harvard.edu” means to connect to some (random) server in that cluster via a

protocol (a language or program of sorts) called “Secure Shell” in such a way that you can access
and control your account from afar, albeit via a fairly arcane interface (a “terminal window”). In
fact, the servers in this cluster might very well not even have keyboards and mice, since they’re
meant to be used from afar by many users at once. Programs like PuTTY and SecureCRT on
Windows and Terminal on Mac OS are “SSH clients,” programs that implement this SSH protocol
and, therefore, allow you to connect in this manner.1

 If unfamiliar with this process of SSHing, read over one of the HOWTOs for SSH available via the

link to Resources on the course’s website.

 Ready? Go ahead and actually SSH to nice.fas.harvard.edu using your SSH client of choice.

In other words, “log into your FAS account via SSH.” In other words still, “connect to
nice.fas.harvard.edu.” Or, better yet, “pull up a terminal window,” as the l337 are fond of
saying.2 Henceforth, statements like these pretty much mean the same thing. After providing
your username and password, you should reach the “command line” with the so-called “blinking
prompt,” even though it doesn’t always blink. (Depends on your SSH client!) That blinking prompt
(or, really, the program that runs by default when you SSH to a server) is called your “shell.” A
shell is just an interpreter of commands. You type something, it does something.

 Let’s go ahead and restore your FAS account’s “dotfiles” (i.e., configuration files) to their original

state, lest we assume your account is configured in some way that it is not.3 At your blinking
prompt, go ahead and execute the command below. That is, type the below and then hit Enter.

 /usr/local/bin/fixdotfiles

 Assuming you typed the above correctly, you’ve just run a “shell script” (i.e., a program written

not in a compiled language like C but an interpreted language called “C shell”) that, per its own
output, will install some “new system default” configuration files into your account.4 To be even

1 Harvard actually has a “site license” for SecureCRT, which is technically commercial software that Harvard pays for on your
(and everyone else’s) behalf. But we’ll generally recommend PuTTY for Windows users this semester, if only because it’s
popular and free. But you’re welcome to use any SSH client.
2 http://en.wikipedia.org/wiki/Leet
3 If you’d rather not undo changes that you yourself have made to your dotfiles since obtaining your FAS account, that’s fine,
you can skip this step. If you never heard of dotfiles before today, though, don’t skip this step!
4 If you see “Command not found,” you typed it incorrectly! Try again!

This is CS 50.
Harvard College Fall 2009

3 < 15

more precise, you just ran a script called fixdotfiles that lives in a directory (i.e., folder) called
bin that lives in a directory called local that lives in a directory called usr that lives in the
server’s “root directory” (called /). Much like there are conventions in Windows and Mac OS for
where programs go (e.g., in “Program Files” on Windows and in “Applications” on Mac OS),
similarly are there conventions in Linux. In /usr/ are programs meant for users.5 In
/usr/local/ are programs that didn’t necessarily come with Linux itself. In /usr/local/bin/
are programs (i.e., binaries) themselves. But these are just conventions; exceptions abound.

 Anyhow, now configure your account for CS 50 specifically by executing the command below.

Note that the tilde (~) is likely in your keyboard’s top-left corner.

 ~cs50/pub/bin/cs50setup

 Assuming you typed the above correctly, you’ve just run another “script” (this one written by us in

another interpreted language called “Perl”) that alters your shell’s configuration.6 Not only does
that script provide you with access to software that the course has installed in its own account on
nice.fas.harvard.edu (e.g., gcc), that script also alters the appearance of your prompt to be
more helpful than the default one. But you’ll need to log out and back in for these changes to
take effect. Do so by executing

 exit

 or, if you like longer words,

 logout

 at your prompt, and then re-SSH to nice.fas.harvard.edu. Upon logging back in, you can

confirm that you done good by executing the command below.

 cs50check

 If that command is “not found,” PEBKAC is probably to blame.7 For assistance with this process,

simply contact the course’s staff. If, however, all went according to plan, your prompt should now
resemble the below.

 username@nice (~):

 Not only does your prompt now remind you who you are, it also makes clear that you’re

connected to nice.fas.harvard.edu and reminds you parenthetically of your “current
working directory” (i.e., the folder you currently have open). Upon logging into your account, you
are, by default, in your home directory. Ergo the tilde.

5 And, nope, it’s not a typo: there’s no e in usr here! That’s efficiency 4 u!
6 If you see “Command not found,” you typed it incorrectly! Try again!
7 http://en.wikipedia.org/wiki/PEBKAC

This is CS 50.
Harvard College Fall 2009

4 < 15

 Now let’s make room in your life for CS 50. Execute the command below.8

 mkdir ~/cs50/

 You’ve just created in a directory called cs50 in your home directory (the shorthand for which is a

tilde). The code that you write for this problem will ultimately need to reside within this directory
for submission.

 Next, execute the following command.

 mkdir ~/cs50/pset1/

 Perhaps needless to say, you’ve just created a directory called pset1 within that cs50 directory.

Confirm as much by executing the command below.

 find ~/cs50/

 You should see output resembling the “paths” below, where username is your FAS username and

u and s are the first and second characters thereof.

 /home/u/s/username/cs50
 /home/u/s/username/cs50/pset1

 Now change your current working directory to ~/cs50/pset1/ by executing the command

below.

 cd ~/cs50/pset1/

 To check that you are indeed in ~/cs50/pset1/, execute the command below.

 pwd

 You should see output resembling the below.9

 /nfs/home/u/s/username/cs50/pset1/

 It turns out that ~ is actually shorthand for /nfs/home/u/s/username/. Oh and your prompt

should now resemble the below.

 username@nice (~/cs50/pset1):

 Handy, eh?

8 Note the difference between ~/cs50 in this command and ~cs50 in that earlier command.
9 Sometimes, though, /nfs is excluded from such output.

This is CS 50.
Harvard College Fall 2009

5 < 15

 So you now know how to “open folders” at the command line. How do you “close” or “back out”
of them? It turns out that .. (pronounced “dot dot”) represents any directory’s “parent
directory,” the one containing it. Go ahead and execute the below.

 cd ..

 Your prompt should now resemble the below.

 username@nice (~/cs50):

 Were you to execute that same command again, you’d end up in your home directory. But you

can also whisk yourself back to your home directory from anywhere by executing the command
below.

 cd ~

 In fact, if you ever get lost inside your own account, consider executing the command above so

that you can start whatever sequence of steps again from home, sweet home.

 It’s also worth knowing that . (pronounced “dot”) represents your current working directory. Go

ahead and type the command below.

 cd .

 Your prompt should still look the same. Pointless, eh? Trust us, though, . does have its uses.

 Alright, navigate your way back to ~/cs50/pset1/. Remember how?

O hai, Nano!

 Let’s get you warmed up. From within your ~/cs50/pset1/ directory, go ahead and execute the
command below.

 nano hello.c

 Proceed to write your own version of “hello, world.” It suffices to re-type, nearly character for

character, Week 1’s hai1.c, but do at least replace “O hai, world!” with your own argument to
printf.

 Once done with your recreation, hit ctrl-x to save, followed by Enter, and you should be returned

to your prompt. Proceed to execute the command below.

 gcc hello.c

 If you’ve made no mistakes, you should just see another prompt. If you’ve made some mistake,

you’ll instead see one or more warning and/or error messages. Even if cryptic, think about what

This is CS 50.
Harvard College Fall 2009

6 < 15

they might mean, then go find your mistake(s)! To edit hello.c, re-execute Nano as before.
Once your code is correct and compiles successfully, look for your program in your current
working directory by typing the following command.

 ls

 You should see output resembling the below.

 a.out* hello.c

 Actually, some more details would be nice. Go ahead and execute the command below instead.

 ls -l

 More than just list the contents of your current working directory, this command lists their sizes,

dates and times of creation, and more. The output you see should resemble the below.

 -rwx------ 1 username student 7077 2008-09-26 18:04 a.out*
 -rw------- 1 username student 371 2008-09-26 18:03 hello.c

 The -l is a “switch” that controls the behavior of ls. To look up more switches for ls (and its

documentation in general), execute the command below.

 man ls

 You can scroll up and down through in this manual using your keyboard’s arrow keys and space

bar. In general, anytime you’d like more information about some command, try checking its “man
page” by executing man followed by the command’s name! Let’s now confirm that your program
does work. Execute the command below.

 a.out

 You should see your greeting. Before moving on, let’s give your program a more interesting name

than a.out. Go ahead and execute the following command.10

 gcc -o hello hello.c

 In this case, -o is but a switch for gcc. The effect of this switch is to name gcc’s output hello

instead of a.out. Let’s now get rid of your first compilation. To delete a.out, execute the
following command.

 rm a.out

 If prompted to confirm, hit y followed by Enter.

 Welcome to Linux and C.

10 Be careful not to transpose hello and hello.c, else you’ll end up deleting your code!

This is CS 50.
Harvard College Fall 2009

7 < 15

I S BN Readin Bookz.

 As you probably know, most any book that you borrow or buy has an International Standard Book
Number, otherwise known as an ISBN or ISBN-10, “a 10-digit number that uniquely identifies
books and book-like products published internationally.”11 Books published since 2007 might also
have an ISBN-13, a 13-digit number with a similar purpose, but never mind those.

 It turns out that the last of an ISBN-10’s digits is a “check digit,” otherwise known (in binary

contexts) as a “checksum,” a number related mathematically to its preceding digits. ISBN-10s’
digits are supposed to adhere to a formula, not unlike credit card numbers, and this check digit
allows you to check whether an ISBN-10’s other nine digits are (most likely) valid without having
to check, say, a database of books.

 Per the International ISBN Agency’s ISBN Users’ Manual, “The check digit is the last digit of an

ISBN. It is calculated on a modulus 11 with weights 10-2, using X in lieu of 10 where ten would
occur as a check digit.”12

 O rly? Yes, but what does that mean? The manual elaborates. “This means that each of the first

nine digits of the ISBN – excluding the check digit itself – is multiplied by a number ranging from
10 to 2 and that the resulting sum of the products, plus the check digit, must be divisible by 11
without a remainder.”

 Okay, better, but still a bit unclear. Let’s define the check digit in terms of a formula. Fortunately,

thanks to “modular arithmetic,” we can simplify the Agency’s formal definition using weights
ranging from 1 to 9 instead of 10 to 2. In fact, it’s really quite simple. If x1 represents an ISBN-10’s
first digit and x10 its last, it turns out that:13

 x10 = (1∙x1 + 2∙x2 + 3∙x3 + 4∙x4 + 5∙x5 + 6∙x6 + 7∙x7 + 8∙x8 + 9∙x9) mod 11

 In other words, to compute an ISBN-10’s tenth digit, multiply its first digit by 1, its second digit by

2, its third digit by 3, its fourth digit by 4, its fifth digit by 5, its sixth digit by 6, its seventh digit by
7, its eighth digit by 8, and its ninth digit by 9. Take the sum of those products and then divide it
by 11. The remainder should be the ISBN-10’s tenth digit! If, though, that remainder is 10, the
tenth digit should instead be printed as ‘X’ lest it be confused with a ‘1’ followed by ‘0’.

 Let’s try all this out. Per the course’s syllabus, the ISBN-10 for How Computers Work, one of the

course’s recommended books, is 0-7897-3613-6, the tenth digit of which is, obviously, 6. But is
the syllabus right? Well, let’s first take that sum using the ISBN-10’s first nine digits (highlighted in
bold):

 1∙0 + 2∙7 + 3∙8 + 4∙9 + 5∙7 + 6∙3 + 7∙6 + 8∙1 + 9∙3 = 204

11 http://www.isbn.org/standards/home/isbn/us/isbnqa.asp
12 http://www.isbn-international.org/en/userman/download/ISBNmanual.pdf
13 Normally, we’d start counting from 0 and not 1, but for ISBN-10s, it’s simpler not to!

This is CS 50.
Harvard College Fall 2009

8 < 15

 If we now divide that sum by 11, we get 204 ÷ 11 = 18 6/11 (i.e., a remainder of 6)! Well that’s
kind of neat, the ISBN is legit! Actually, also thanks to modular arithmetic, we could just include
that tenth digit in our sum and multiply it by 10:

 1∙0 + 2∙7 + 3∙8 + 4∙9 + 5∙7 + 6∙3 + 7∙6 + 8∙1 + 9∙3 + 10∙6 = 264

 If we now divide this sum by 11, we get 264 ÷ 11 = 24 with no remainder at all, which is an

equivalent way of saying the ISBN-10 is legit! Stated more formally, 0 ≡ 264 (mod 11)!

 Hopefully those exclamation points make the math more exciting.

 So, computing this check digit’s not hard, but it does get a bit tedious by hand. Let’s write a

program.

 In isbn.c, write a program that prompts the user for an ISBN-10 and then reports (via printf)

whether the number’s legit. So that we can automate some tests of your code, we ask that your
program’s last line of output be either YES\n or NO\n, nothing more, nothing less. For simplicity,
you may assume that the user’s input will be exactly ten decimal digits (i.e., devoid of hyphens and
‘X’), the first of which might even be zero(es), as in the case of our recommended book. But do
not assume that the user’s input will fit in an int! Recall, after all, that the largest value that can
fit in an int is 232 – 1 = 4,294,967,295 (and, even then, only if declared as unsigned). True, that’s
a 10-digit value, but there might still be a problem. (What?) Best to be safe and use
GetLongLong from CS 50’s library to get users’ input. (Why?)

 Okay, so you’ve gotten some input. What should you do? Well, realize that this C program, not

unlike Scratch projects, can be reduced to the most basic of building blocks. For the sake of
discussion, suppose that some variable x contains a 10-digit long long (with no leading zeroes).
How can you get at its tenth (i.e., rightmost) digit? Well how about this?

 int tenth = x % 10;

 Do you see why that works? Do not pass Go until it dawns on you why!

 How, now, can you get at that same variable’s ninth digit? Well, why don’t we first get rid of its

tenth digit by shifting every other one place to the right?

 x = x / 10;

 How about that trick? Do you see why it works? The ninth digit, now, is just:

 int ninth = x % 10;

 So I bet there’s a pattern here. And odds are you don’t need to (i.e., shouldn’t) copy/paste lines

like the above nine or ten times. Loops are your friend. To be sure, other approaches exist.
Proceed as you wish! Perhaps some of these tricks, though, will get you started.

This is CS 50.
Harvard College Fall 2009

9 < 15

 Of course, to use GetLongLong, you’ll need to tell gcc about CS 50’s library. Be sure to put

 #include <cs50.h>

 toward the top of isbn.c. And be sure to compile your code with a command like the below.

 gcc -o isbn isbn.c -lcs50

 Note that -lcs50 must come at this command’s end because of how gcc works.

 Incidentally, recall that make can invoke gcc for you and provide that flag for you, as via the

command below.

 make isbn

 Assuming your program compiled without errors (or, ideally, warnings) via either command, run

your program with the command below.

 isbn

 Consider the below representative of how your own program should behave when passed a valid

ISBN-10 (sans hyphens); highlighted in bold is some user’s input.

 username@nice (~/cs50/pset1): isbn
 ISBN: 0789736136
 YES

 Of course, GetLongLong itself will reject an ISBN-10’s hyphens (and more) anyway:

 username@nice (~/cs50/pset1): isbn
 ISBN: 0-7897-3613-6
 Retry: foo
 Retry: 0789736136
 YES

 But it’s up to you to catch inputs that are not ISBN-10s (e.g., my phone number), even if ten digits:

 username@nice (~/cs50/pset1): isbn
 ISBN: 6175230925
 NO

 Test out your program with a whole bunch of inputs, both valid and invalid. (We certainly will!)

There are three more ISBN-10s in the syllabus, and way more on Amazon.com. If your program
behaves incorrectly on some inputs (or doesn’t compile at all), have fun debugging!

 If you’d like to play with the staff’s own implementation of isbn on nice.fas.harvard.edu,

you may execute the below.

 ~cs50/pub/solutions/pset1/isbn

This is CS 50.
Harvard College Fall 2009

10 < 15

Time for Change.

 “Counting out change is a blast (even though it boosts mathematical skills) with this spring-loaded
changer that you wear on your belt to dispense quarters, dimes, nickels, and pennies into your
hand.” Or so says the website on which we found this here fashion accessory.14

 Of course, the novelty of this thing quickly wears off, especially when some jerk wants to pay for
his newspaper with a hundred-dollar bill. Fortunately, computer science has given cashiers
everywhere ways to minimize numbers of coins due: greedy algorithms.

 According to the National Institute of Standards and Technology (NIST), a greedy algorithm is one

“that always takes the best immediate, or local, solution while finding an answer. Greedy
algorithms find the overall, or globally, optimal solution for some optimization problems, but may
find less-than-optimal solutions for some instances of other problems.”15

 What’s all that mean? Well, suppose that a cashier owes a customer some change and on that

cashier’s belt are levers that dispense quarters, dimes, nickels, and pennies. Solving this
“problem” requires one or more presses of one or more levers. Think of a “greedy” cashier as one
who wants to take, with each press, the biggest bite out of this problem as possible. For instance,
if some customer is owed 41¢, the biggest first (i.e., best immediate, or local) bite that can be

14 Description and image from hearthsong.com. For ages 5 and up.
15 http://www.nist.gov/dads/HTML/greedyalgo.html

This is CS 50.
Harvard College Fall 2009

11 < 15

taken is 25¢. (That bite is “best” inasmuch as it gets us closer to 0¢ faster than any other coin
would.) Note that a bite of this size would whittle what was a 41¢ problem down to a 16¢
problem, since 41 – 25 = 16. That is, the remainder is a similar but smaller problem. Needless to
say, another 25¢ bite would be too big (assuming the cashier prefers not to lose money), and so
our greedy cashier would move on to a bite of size 10¢, leaving him or her with a 6¢ problem. At
that point, greed calls for one 5¢ bite followed by one 1¢ bite, at which point the problem is
solved. The customer receives one quarter, one dime, one nickel, and one penny: four coins in
total.

 It turns out that this greedy approach (i.e., algorithm) is not only locally optimal but also globally

so for America’s currency (and also the European Union’s). That is, so long as a cashier has
enough of each coin, this largest-to-smallest approach will yield the fewest coins possible.16

 How few? Well, you tell us. Write, in greedy.c, a program that first asks the user how much

change is owed and then spits out (via printf) the minimum number of coins with which said
change can be made. Use GetFloat from CS 50’s library to get the user’s input and printf from
the Standard I/O library to output your answer.

 We ask that you use GetFloat so that you can handle dollars and cents, albeit sans dollar sign. In

other words, if some customer is owed $9.75 (as in the case where a newspaper costs 25¢ but the
customer pays with a $10 bill), assume that your program’s input will be 9.75 and not $9.75 or
975. However, if some customer is owed $9 exactly, assume that your program’s input will be
9.00 or just 9 but, again, not $9 or 900. Of course, by nature of floating-point values, your
program will likely work with inputs like 9.0 and 9.000 as well; you need not worry about
checking whether the user’s input is “formatted” like money should be. And you need not try to
check whether a user’s input is too large to fit in a float. But you should check that the user’s
input makes cents! Er, sense. Using GetFloat alone will ensure that the user’s input is indeed a
floating-point (or integral) value but not that it is non-negative. If the user fails to provide a non-
negative value, your program should re-prompt the user for a valid amount again and again until
the user complies. Incidentally, do beware the inherent imprecision of floating-point values.17
Before doing any math, you’ll probably want to convert the user’s input entirely to cents (i.e.,
from a float to an int) to avoid tiny errors that might otherwise add up!18 Be careful to round
and not truncate your pennies!

16 By contrast, suppose that a cashier runs out of nickels but still owes some customer 41¢. How many coins does that cashier,
if greedy, dispense? How about a “globally optimal” cashier?
17 For instance, 0.01 cannot be represented exactly as a float. Try printing its value to, say, ten decimal places with code like
the below:

float f = 0.01;
printf("%.10f\n", f);

18 Don’t just cast the user’s input from a float to an int! After all, how many cents does one dollar equal?

This is CS 50.
Harvard College Fall 2009

12 < 15

 So that we can automate some tests of your code, we ask that your program’s last line of output
be only the minimum number of coins possible: an integer followed by \n. Consider the below
representative of how your own program should behave; highlighted in bold is some user’s input.

 username@nice (~/cs50/pset1): greedy
 O hai! How much change is owed?
 0.41
 4

 By nature of floating-point values, that user could also have inputted just .41. (Were they to

input 41, though, they’d get many more coins!)

 Of course, more difficult users (say, n00bs) might experience something more like the below.

 username@nice (~/cs50/pset1): greedy
 O hai! How much change is owed?
 -0.41
 Um, yeah, how much change is owed?
 -0.41
 Um, yeah, how much change is owed?
 foo
 Retry: 0.41
 4

 Per these requirements (and the sample above), your code will likely have some sort of loop. If,

while testing your program, you find yourself looping forever, remember that you can kill your
program (i.e., short-circuit its execution) by hitting ctrl-c (sometimes a lot).

 We leave it to you to determine how to compile and run and debug this particular program!

 If you’d like to play with the staff’s own implementation of greedy on nice.fas.harvard.edu,

you may execute the below.

 ~cs50/pub/solutions/pset1/greedy

This is CS 50.
Harvard College Fall 2009

13 < 15

 Toward the end of World 1-1 in Nintendo’s Super Mario Brothers, Mario must ascend a “half-
pyramid” of blocks before leaping (if he wants to maximize his score) toward a flag pole. Below is
a screenshot.

 Write, in a file called mario.c, a program that recreates this half-pyramid using asterisks (*) for
blocks. However, to make things more interesting, first prompt the user for the half-pyramid’s
height. (The height of the half-pyramid pictured above happens to be 8.) Then, generate (with
the help of printf and one or more loops) the desired half-pyramid. Assume that the user’s
terminal window is exactly 80 characters wide by 24 characters tall. (Best to ensure that your own
window boasts exactly those dimensions.) So that a blinking prompt still fits on the screen after a
half-pyramid’s generation, demand that the user provide a non-negative integer no greater than
23. Take care to align your half-pyramid, no matter its height, in the window’s bottom-right
corner (i.e., 80 characters over and 23 characters down). Note that the rightmost two columns of
blocks must be of the same height. No need to generate the pipe, clouds, or Mario himself. Just
the half-pyramid!

 You’re again on your own when it comes time to compile and run and debug this last program!

 If you’d like to play with the staff’s own implementation of mario on nice.fas.harvard.edu,

you may execute the below.

 ~cs50/pub/solutions/pset1/mario

 And if you’d simply like to play, you may enjoy procrastinating here:

 http://www.supermariobrothers.org/

This is CS 50.
Harvard College Fall 2009

14 < 15

Submitting Your Work.

 Ensure that your work is in ~/cs50/pset1/. Submit your work by executing the command
below.

 cs50submit pset1

 Thereafter, follow any on-screen instructions until you receive visual confirmation of your work’s

successful submission. You will also receive a “receipt” via email to your FAS account, which you
should retain until term’s end. You may re-submit as many times as you’d like; each resubmission
will overwrite any previous submission. But take care not to re-submit after the problem set’s
deadline, as only your latest submission’s timestamp is retained.

