This is CS 50.
Harvard College Fall 2009

%,2{ Problem Set 4: Sudoku

due by 7:00pm on Fri 10/9

Goals.

. Learn to use ncurses, a library for GUIs.

. Design and implement larger pieces of software.
. Master sudoku.

Recommended Reading.

. Sections 1 -13 of http://tldp.org/HOWTO/NCURSES-Pro

diff hacker4.pdf hacker4.pdf.

. Hacker Edition requires a [H]int feature. 00

This is CS 50.
Harvard College Fall 2009

Academic Honesty.

All work that you do toward fulfillment of this course’s expectations must be your own unless
collaboration is explicitly allowed (e.g., by some problem set or the final project). Viewing or copying
another individual’s work (even if left by a printer, stored in an executable directory, or acciden
shared in the course’s virtual terminal room) or lifting material from a book, website, or other source
even in part—and presenting it as your own constitutes academic dishonesty, as does showing
your work, even in part, to another student.

Similarly is dual submission academic dishonesty: you may not submit the same or si
course that you have submitted or will submit to another. Nor may you provi
solutions to problem sets to individuals who take or may take this course in_t
submission of any work that you intend to use outside of the course (e.g., f
by the staff.

be approved

You are welcome to discuss the course’s material with others in ord etter rstand it. You may
even discuss problem sets with classmates, but you may not share In other words, you may
communicate with classmates in English, but you may not co , C. If in doubt as to the
appropriateness of some discussion, contact the staff.

You may even turn to the Web for instruction beyon
and for solutions to technical difficulties, but not fo
your own final project. However, failure to cite (as wit
that you do discover outside of the cou
constraints) and then integrate into your

ures and sections, for references,
tions to problems on problem sets or
nts) the origin of any code or technique
d sections (even while respecting these
k may be considered academic dishonesty.

All forms of academic dishonesty a al

Grades.

Your work on this pro evaluated along three primary axes.
Correctness. T

Design. Tow te
Style. Towhat

exten our code consistent with our specifications and free of bugs?
n our code written well (i.e., clearly, efficiently, elegantly, and/or logically)?
our code readable (i.e., commented and indented with variables aptly named)?

1<2

This is CS 50.
Harvard College Fall 2009

Getting Started.

O SSHto nice.fas.harvard.edu and execute the command below.

cp -r ~cs50/pub/src/psets/hackerd/ ~/cs50/

That command will copy this problem set’s distribution code (aka “distro” among the |
your own ~/cs50/ directory. The -r switch triggers a “recursive” copy. Navigate your

your copy by executing the command below. O
Nou d see the

cd ~/cs50/hackerd/

If you list the contents of your current working directory (remember
below. If you don’t, don’t hesitate to ask the staff for assistance.

debug.bin 133t.bin Makefile n0OOb.bin sudoku sudo
Well those look like fun!

The numbers must be single.

] Much like the Game of Fifteen, Sudoku is a ga 0, volving numbers. But it's much more
interesting. Consider the puzzle below.

5

6 8

6 3

5 9
5
113

9 7

ject of Sudoku is to fill this 9x9 grid in such a way that each column, each row, and each of
ine 3x3 boxes therein contain each of the numbers 1 through 9 exactly once. A whole bunch
of strategies exist, but the general idea is to figure out iteratively what numbers could go where.

2<3

This is CS 50.
Harvard College Fall 2009

For instance, let’s home in on one of the 3x3 boxes that already has a lot of numbers and work the
ol’ process of elimination. Consider the box in the middle, highlighted below.

1 3|4 5
6 8
5 3
6 5 9
7 5
9 612 113
6 |8 2
3 5
2 19

? Well, 3 can’t go in that
t row. And 3 can’t go on either
Aha! It must be that 3 belongs
t it! And so we fill in that spot

side of the 7, since the box to the left already has a 3
in that box’s top row, in which case there’s onl
with a 3, per the below.

3<4

This is CS 50.
Harvard College Fall 2009

Let’s try another trick now. Rather than figure out where a number can go, let’s figure out where
a number cannot! Let’s home in on 9. Highlighted in gray now are all of the spots that 9 cannot
go, either because there’s already another number there or because there’s already a 9 in the
highlighted row, column, or box, per the below.

1 34 5
6 8
5 6|3
1|6 |3 |5]8| |9
3] |7] |>s o
9| |6]2| |1]3 \
6|8 2
] A
2 19

Well, look at that! Looks like we’ve found a home at box in the middle because

there’s only one place it can possibly go, per the

4<5

This is CS 50.
Harvard College Fall 2009

Rinse, wash, and repeat these sorts of tricks enough times, and (assuming no PEBPAC) we’ll end

up with the solution below."

NIW OoOJO | &~dIIN V| K
A= OV ININJO WO
UV O INJOO | W RPN ®
0 U |HIN ORI NW
= | O NJ (Nwju | O s
O N|WIER=R | A~ U] O |N
(A~ OJTW | VT O]LIN = |N
Wi i UWMIIN| =R (IN]JO | &~ O
NN R OO OJTW |0 WUV

If still not quite clear on how the game is played, feel free Wikipedia.

http://en.wikipedia.org/wiki/Sudoku

And if interested for your own edification in t a nd algorithmics behind the game,
you might also find these articles of interest:

0 Just for fun, we’ve included a uzzles (and solutions) at this document’s end. And
if you start finding yoursel i icted, odds are an implementation of Sudoku exists for
your mobile phone!

[0 Alright, now the real u’re about to implement (most of) Sudoku in C.

Much like ith some code for the Game of Fifteen, similarly have we provided
udoku. Whereas Problem Set 3 relied on ANSI escape sequences to
e of Fifteen’s “graphics,” though, this problem set introduces a library called
called “curses”) that will provide your implementation of Sudoku with a nicer
er interface). To be sure, your program won’t look like Mac OS or Windows, but
sexier than that Game of Fifteen! Not only does ncurses make it pretty easy to
e colors into a program (and even dialogs and menus), it also allows you to treat your
al window as a grid of chars, any one of which can be updated without affecting the
s. That sort of feature is perfect for a game like Sudoku, as you’ll be able to add numbers to
the game’s board one at a time without having to re-generate the whole screen after each move
(as you did with print £ for the Game of Fifteen).

1Thesecond’P’standsfor”puzzle,”andyou’reinthechair:
http://www.urbandictionary.com/define.php?term=pebkac

5<6

This is CS 50.
Harvard College Fall 2009

Now, a typical terminal window is 80 characters wide by 24 characters tall (i.e., 80x24), and
ncurses addresses those characters by way of (y, x) coordinates, whereby (0, 0) refers to your
window’s top-left corner, (0, 79) refers to your window’s top-right corner, (23, 0) refers to your
window’s bottom-left corner, and (23, 79) refers to your window’s bottom-right corner.> Even if
your window boasts dimensions smaller or larger than these, the idea is the same. When it co
time to fill in a blank with respect to Sudoku, you’ll simply update the char at some (y,
coordinate.

Now, how about that skeleton. Essentially, we’ve implemented an aesthetic fran
game so that you can focus on the more interesting parts: namely, the game’s
we’ve written the code (and comments) in such a way that you should be able to
about ncurses and more simply by reading our code. And you’ll fin
Sudoku’s framework much like we did the Game of Fifteen’s. It's in mai at ve a big loop,
waiting and waiting for some user’s input. And it’s in separate fun at we'{@nd, soon, you)
set the game up and respond to that input.

e last, you’ll also find that
00 lines. But know now
of the functions in isolation,
at when you combine so many
et’s take a look.

Because this game is meant to be more sophisticated (and
we’ve given you more code this time. Don’t freak out, b
that none of it is all that complicated. In fact, if yod
you’ll likely find each pretty straightforward. W,
building blocks, you get some pretty compellin
If you’re not still there, navigate your way to ~ acker4/ and execute the (increasingly
familiar) command below.

make

You should find a brand- alled sudoku in your current working directory. Go
ahead and run it by typin below.

sudoku

You won’ty eleton but instead the game’s usage:

Usage: dok 133t [#]
skeleton support two levels of game play (n0OOb and 133t), it also comes with
t boards for each level. Ultimately, if you’d like to play a pseudorandomly chosen

, you'll want to execute just:

u n00b

2 Annoyingly, yes, it’s (y, x) and not (x, y).

6<7

This is CS 50.
Harvard College Fall 2009

But if you want to play a specific board (e.g., n0O0b #42), perhaps one that defeated you earlier,
you can load it up manually:

sudoku n00b 42

Alright, go ahead and execute

sudoku n00b 42

to fire up our skeleton with n00b #42. You should see a GUI like that below.?

K\

®MNO Terminal — ssh — 80x24
Suduko by John Harvard

oy John Harvard

d ——— ——— ———

playing né@éb

[N]ew Game [R]estart Game [QJuit Game

arity’s sake, we use periods for blanks; underneath the hood, we represent each
e blanks with 0 (an actual int). So this is all pretty neat, but this skeleton lacks that
ch (not to mention support for moving the cursor). What do work out of the box are
ame, [R]estart Game, and [Q]uit Game. So go ahead and hit Q to quit.

If using PuTTY on Windows or Terminal on Mac OS, you should see a colorful GUI. If you're instead using SecureCRT on
Windows and only see monochrome (e.g., black and white), go to Options — Session Options... — Terminal — Emulation, and
change Terminal to Linux and check the box next to ANSI Color. After clicking OK, go to Options — Save Settings Now. You
may then need to log out and back in to see our GUI in color. If you can’t get color to work, head to the course’s bulletin board
for advice!

7<8

This is CS 50.
Harvard College Fall 2009

Then open up sudoku.h (as with Nano). You’ll find in that file a whole bunch of constants that
get compiled into the program. Go ahead and change, at least, AUTHOR to your own name. Feel
free to change TITLE as well. To see the results, save your changes and quit. Then re-run
"make" followed by *sudoku". You’ve just made the program your own!

Now go back into sudoku.h and play with all those mentions of color. It turns out that ncurs
deals with colors in pairs, whereby characters have both a foreground color and a ba
color. By default, characters’ foregrounds are white and backgrounds are black. But clearl
overridden those defaults for our skeleton’s borders and logo. For now, you'll wag

enum alone, but feel free to change the values of any constants whose names b m
BG . Here are the colors that ncurses comes with:

COLOR BLACK

COLOR_RED

COLOR_GREEN

COLOR_YELLOW

COLOR_BLUE \

COLOR_MAGENTA
COLOR_CYAN
COLOR_WHITE

You will, of course, need to recompile your ga sge an rful changes. Not all that hard to
make one hideous game, eh?

e. It sho ok pretty similar to the Game of Fifteen’s,
rses flag. And be sure not to change the two tabs in

Okay, now take a quick glance at Make
but take note that we’ve included
that file to spaces!

Now take a look at, say, n t with Nano this time! Instead, execute the command

below.*

xxd -b n00b.bin

Wow, a whole lo s probably flew past. You’ve just looked at the contents of a binary
file. Insi file hole bunch of 32-bit ints, 1024 x 81 = 82,944 of them, in fact, as that
file cont 102 0b boards, each of which includes 81 numbers and/or blanks (for a 9x9 grid).’
Similarly .bin contain 1024 133t boards.

‘ve run sudoku at least once, you might also have noticed a file called 1og. txt that
ere when you first copied our code over. You’'re welcome to look, but you needn’t pay
ttention; it’s generated by our framework in order to facilitate automated tests of your

Alright, we’re really moving along. Only one file to go!

* Note that “n00b” is spelled with two zeroes!
® We could have used unsigned chars instead of ints, since Sudoku only needs numbers from 1 to 9, but we decided
that ints would be simpler, despite the additional cost in space.

8<9

This is CS 50.
Harvard College Fall 2009

[0 Damn, it’s the big one.
Go ahead and open up sudoku. c (as with Nano).

The best way to tackle this problem set is to start by understanding this file. We'll get you start

First take note of one of the file’s first lines:

#define CTRL (x) ((x) & ~0140)

Just as you can define what we know as constants with #define, you can
short snippets of code that behave a little bit like functions but without th g
frames) of an actual function call. This particular macro will ena etect control
characters from users, if you so desire. Out of the box, our skeleto ands ctrl-L, a
keystroke meant to induce a redrawing of the game’s screen.

ek 5’s first lecture, think of
is particular struct is a
(.) operator (e.g., g.level).
s well. Truth be told, we could
using a struct, much like we did
| related to this game, we decided to
t'll be all the more obvious when these

Now take a look at the struct called g just below that macro.
a struct as a wrapper that groups related variables to
whole bunch of fields, each of which can be access
Because g is a global variable, so are those fields e
have defined those fields as global variables th
for the Game of Fifteen. But because there
keep them together in one big struct called g.
variables are used that they’re not, in f, locals.

ike we divided the Game of Fifteen into functions
similarly have we taken that approach here. But

Next notice our skeleton’s proto
whose names described theij
more on those later.

if we not hold your hand too much through this one. We
is as much about writing your own programs as it is about
your assignment (or job) is to build on the latter. Odds are you'll
tually having comments in ours!®

Now dive into mai
daresay that learni
reading others’;
thank us so

To bes ther lot going on in this file, but you don’t need to read each and every line (yet)
togetas program’s overall flow.

and every line in main, though. After all, that’s the function that drives this whole
. And because our other functions’ names rather say what those functions do, you can
y read main from top to bottom and have a pretty good idea of how the program
ently works.

® You should see the mess that is the open-source bulletin board software we’re using.

9<10

This is CS 50.
Harvard College Fall 2009

In fact, notice that we’ve embedded a secret debug level that has 9 boards. You should find that
those boards, because they’re solvable so quickly, facilitate debugging.’

Next dive into some of the functions that main calls. A good one to start with is startup, as it
gets ncurses going. Notice how it calls a bunch of other functions that appear to confi
ncurses. Although we’ve commented each call, you might want to pull up the man page for so
or all of those functions, if only to get all the more comfortable with ncurses.

Next take a look at 1oad board, the function that loads a n0Ob or 133t (or deb
disk, depending on the value, if any, in main’s argv[2]. You needn’t underst
fseek, fread, or fclose work for this problem set, but it is kind of neat h
bits into memory. What this function ultimately does is load 81 ints in
g.board. Not all that hard!

Let’s see, next take a look at draw_borders. It’s this functi
borders. Of particular note in this function is how to use ncu
function first determines your terminal window’s dimensi
(that comes with ncurses).® It eventually uses those
bottommost rows with some color (and instruction

macro called getmaxyx
r window’s topmost and
w the function enables color,
alled PAIR BORDER (back in
suduko.h). It then proceeds to draw the by moving, left to right, from

coordinate to coordinate, laying down blank s

down some text, centering your progr. TITLE aR@'AUTHOR in the topmost border using some
simple arithmetic. It then plants structions in the bottommost border, before turning
color back off.

nction that lays down the ASCII art that represents our
etermine your window’s dimensions. It then uses those

Now take a look at draw
game’s board. Similar,

ather than generate this grid character by character, this function
e strings instead (using ncurses’ mvaddstr function). Specifically, this

formulas by tri
instead la

or loop) in order to print most of the game’s grid. (Again, we determined
inates by trial and error.) We then thought it'd be neat to remind the user of
oard that he or she is playing, and so we constructed a string on the fly using
d then added it to the screen with a final call to mvaddstr.

. 9
tally, if curious to learn more about all these ncurses functions, man is your friend.

’ unny story: we didn’t include those 9 boards in last year’s problem set. So last year’s students had to solve a puzzle every
time they wanted to debug their code. They, um, hate Sudoku now.

% It's because getmaxyx is a macro and not an actual function that you don’t need to pass in its arguments by reference.

® Some functions don’t actually have their own man page, so you might need to execute "'man ncurses ', and then look for
the Manual Page Name for some the curses Routine Name of interest.

10<11

This is CS 50.
Harvard College Fall 2009

Next glance at draw logo. Notice how it bases its own coordinates on those of the grid. Notice,
too, how distorted our logo looks. That’s because we had to escape some of its backslashes with
backslashes of our own! Do feel free to alter the logo. You might find this site a fun time:

http://www.network-science.de/ascii/

Now look at draw numbers. It's this function that fills that otherwise empty grid
numbers in g.board. That kind of knowledge is bound to be useful!

Now glance at show banner and hide banner. Both pretty simple, these f S\ EXist
that you can show (and hide) messages to users. In fact, while using ncurses, do intf
as well. Bad things will happen.

Speaking of show banner, why don’t we also peek at show curs ecall t unctions like
mvaddch and mvaddstr end up moving your cursor in order to the screen. That's
kind of annoying if you want to use that same cursor to e act ame. And so it’s

necessary to remember where the cursor should be with respec t grid. Glance back at that
global called g and you’ll see how we do it. This show n relies on that struct to
return the cursor to where it should be after screen u

Let’s see, you needn’t worry too much about s1 Just know that when terminal
windows are resized (as from 80x24 to some er maller), “signals” are generated. Our

code is “listening” for that signal so that we can resizings by re-centering everything.

Okay, so that only leaves 1og mov, aw all, restart game, and shutdown. Those you
can handle! Take the same appr k here, walking through each function, pulling up
man pages as needed, and o o} nce'you understand each function’s flow.

So that’s everything. N 00Bylines.

] Okay, a few sanity.c Cre file called questions.txtin ~/cs50/hacker4/ using Nano
(remember ho it your answers to the below!

i N at lIs stremp. What does it mean if strcmp, when passed two strings as
ar, entsfeturns 0? (Hint: RTFM!)

ii. Ho u rewrite the line below, excerpted from main, using keywords if and else?

i = (!strcmp(g.level, "debug")) 2 9 : 1024;

hat circumstances might the call to sscanf below, excerpted from main, return 2

tead of 1?

scanf (argv[2], " %d %c", &g.number, &c)

What fields in g represent the coordinates at which the user’s cursor belongs?

What function (that we wrote) can you call to make the cursor actually appear at those

coordinates? (Hint: we told you a few paragraphs ago!)

Around what line number in main could you add additional case statements to handle

keystrokes besides N, R, and ctrl-L?

vii. Most n00b and 133t boards have lots of blanks. But how many blanks are in debug #17?
In debug #2? And in debug #97?

11<12

This is CS 50.
Harvard College Fall 2009

The funny thing is that none of the 600+ lines we wrote actually implement Sudoku. But that’s
where you come in! Your challenge for this problem set is to implement a few features, among
them support for actual game play! Specifically, you must implement each of the REQUIRED
FEATURES below; you are welcome, but not required, to implement any of the ADD-ONS.

This problem set is perhaps more about design than anything else, so do give some thought abo
how best to implement some feature, given the game’s framework. With that said
welcome to change most any aspect of our code if the change fits your design better.
what you must not change is anything related to logging, including 1og move.
automate some tests of your code, your program, no matter your changes,
implementation of 1og move after each keystroke from users, whether no
actually altered the board.

Alright, get to it! Here’s your menu of features. Know that we’ erate e REQUIRED
FEATURES in the order in which they should probably be implemen

REQUIRED FEATURES
[0 At the moment, the cursor is “stuck” in the . Enable users to move that
cursor up, down, left, and right by way of t k rrow keys. You're welcome to
support other keys for movement as yo st support KEY UP, KEY DOWN,
KEY LEFT, and KEY RIGHT, constants the characters fed to ncurses’ getch
function when arrow keys are pressed. (
You should only allow the user ove his er cursor to coordinates where there are
actual numbers or blanks (; cursor should “hop over” one-character lateral gaps
between cells as well as t ossbars that make up the grid’s lines), but you
should find that the implemented in show cursor helps with that!
Even though you mj o make the cursor hop over numbers that came with
the board (i.e., t nged), resist the temptation; allow the cursor to be in any

figure out how to handle Backspace, but know that KEY DC represents Delete!)
not allow the user to alter numbers that “came with” the board.

ny time the user changes the board, check whether the game has been won. If so, display
a congratulatory banner and prevent the user from changing the board further.

Any time the user changes the board, check whether he or she has inserted a number where

it cannot possibly go (because that same number already exists in the same column or row
or 3x3 box). If so, display a banner warning the user of the problem that disappears the

12<13

This is CS 50.
Harvard College Fall 2009

moment the user changes the board again (unless the change is also a problem, in which
case the user should again be warned).

[J Add to the game a [H]int feature, whereby hitting H fills in a blank (with a correct number)
on behalf of the user each time that it’s called during play.™

ADD-ONS (IMPLEMENT ZERO (0) OR MORE OF THESE)
Make clear in the comments atop sudoku. c which of these features you implemented, if a

[0 In addition to displaying a congratulatory banner, turn all 81 numbers gree @

i ame
has been won.
[0 In addition to warning the user of obvious mistakes with a bann n lumn, row, or
3x3 box with the error red until the mistake is corrected.

, bot to top, left to right,
Y LEFT, or KEY RIGHT,

O Enable the cursor to “wrap around” from the top row to
or right to left if the user presses KEY UP, KE
respectively, one too many times.

O

[0 Display numbers that “came with” the boar or than those that the user has

inputted.

the user has been playing the current
ck at any time by hitting T. Be sure to stop

[0 Keep track (in seconds) of the amount of
board and allow the user to sho hide that

[0 Allow the user to undo ade to the board by hitting U or ctrl-Z.

O Questions? Don’t forget se’s bulletin board!

If you'd like to pl own implementation of sudoku, you may execute the below.

~cs50/pu s/hacker4/sudoku

10 . , . . e , .
Afraid the boards’ solutions are not in those .bin files, in case you’re wondering!

13<14

This is CS 50.
Harvard College Fall 2009

Submitting Your Work.

O

Ensure that your work is in ~/cs50/hacker4/. Submit your work by executing the command
below.

cs50submit hacker4

Thereafter, follow any on-screen instructions until you receive visual confirmation of you

successful submission. You will also receive a “receipt” via email to your FAS acco i
should retain until term’s end. You may re-submit as many times as you’d like; ez
will overwrite any previous submission. But take care not to re-submit after tt
deadline, as only your latest submission’s timestamp is retained.

N

14<15

Puzzle 1 (Medium, difficulty rating 0.55) Puzzle 2 (Easy, difficulty rating 0.39)

Puzzle 3 (Hard, difficulty rating 0.75) Puzzle 4 (Medium, difficulty rating 0.49)

Generated by http://www.opensky.ca/~jdhildeb/softwar e/sudokugen/ on Sat Oct 18 07:07:46 2008 GM T. Enjoy!

Puzzle5 (Hard, difficulty rating 0.61) Puzzle 6 (Medium, difficulty rating 0.53)

Puzzle 7 (Medium, difficulty rating 0.47) Puzzle 8 (Hard, difficulty rating 0.71)

Generated by http://www.opensky.ca/~jdhildeb/softwar e/sudokugen/ on Sat Oct 18 07:07:46 2008 GM T. Enjoy!

Puzzle 9 (Easy, difficulty rating 0.35) Puzzle 10 (Easy, difficulty rating 0.43)

Puzzle 11 (M edium, difficulty rating 0.56) Puzzle 12 (Easy, difficulty rating 0.35)

Generated by http://www.opensky.ca/~jdhildeb/softwar e/sudokugen/ on Sat Oct 18 07:07:46 2008 GM T. Enjoy!

Puzzle 13 (Medium, difficulty rating 0.50) Puzzle 14 (Medium, difficulty rating 0.53)

Puzzle 15 (Easy, difficulty rating 0.37) Puzzle 16 (Very hard, difficulty rating 0.84)

Generated by http://www.opensky.ca/~jdhildeb/softwar e/sudokugen/ on Sat Oct 18 07:07:46 2008 GM T. Enjoy!

Puzzle 17 (Hard, difficulty rating 0.60) Puzzle 18 (Medium, difficulty rating 0.48)

Puzzle 19 (Medium, difficulty rating 0.48) Puzzle 20 (Hard, difficulty rating 0.65)

Generated by http://www.opensky.ca/~jdhildeb/softwar e/sudokugen/ on Sat Oct 18 07:07:46 2008 GM T. Enjoy!

Puzzle 21 (Easy, difficulty rating 0.40) Puzzle 22 (Hard, difficulty rating 0.61)

Puzzle 23 (Easy, difficulty rating 0.45) Puzzle 24 (Hard, difficulty rating 0.60)

Generated by http://www.opensky.ca/~jdhildeb/softwar e/sudokugen/ on Sat Oct 18 07:07:46 2008 GM T. Enjoy!

Puzzle 25 (Medium, difficulty rating 0.56) Puzzle 26 (M edium, difficulty rating 0.50)

Puzzle 27 (Medium, difficulty rating 0.47) Puzzle 28 (M edium, difficulty rating 0.46)

Generated by http://www.opensky.ca/~jdhildeb/softwar e/sudokugen/ on Sat Oct 18 07:07:47 2008 GM T. Enjoy!

Puzzle 29 (Easy, difficulty rating 0.42) Puzzle 30 (Easy, difficulty rating 0.28)

Puzzle 31 (Easy, difficulty rating 0.40) Puzzle 32 (Easy, difficulty rating 0.44)

Generated by http://www.opensky.ca/~jdhildeb/softwar e/sudokugen/ on Sat Oct 18 07:07:47 2008 GM T. Enjoy!

Puzzle 33 (Easy, difficulty rating 0.43) Puzzle 34 (Easy, difficulty rating 0.38)

Puzzle 35 (Easy, difficulty rating 0.41) Puzzle 36 (Very hard, difficulty rating 0.86)

Generated by http://www.opensky.ca/~jdhildeb/softwar e/sudokugen/ on Sat Oct 18 07:07:47 2008 GM T. Enjoy!

Puzzle 37 (Easy, difficulty rating 0.44) Puzzle 38 (Easy, difficulty rating 0.45)

Puzzle 39 (Hard, difficulty rating 0.67) Puzzle 40 (Hard, difficulty rating 0.61)

Generated by http://www.opensky.ca/~jdhildeb/softwar e/sudokugen/ on Sat Oct 18 07:07:47 2008 GM T. Enjoy!

Puzzle 41 (Medium, difficulty rating 0.50) Puzzle 42 (Medium, difficulty rating 0.48)

Puzzle 43 (Easy, difficulty rating 0.35) Puzzle 44 (Very hard, difficulty rating 0.78)

Generated by http://www.opensky.ca/~jdhildeb/softwar e/sudokugen/ on Sat Oct 18 07:07:47 2008 GM T. Enjoy!

Puzzle 45 (M edium, difficulty rating 0.53) Puzzle 46 (Easy, difficulty rating 0.35)

Puzzle 47 (Medium, difficulty rating 0.48) Puzzle 48 (Hard, difficulty rating 0.60)

Generated by http://www.opensky.ca/~jdhildeb/softwar e/sudokugen/ on Sat Oct 18 07:07:47 2008 GM T. Enjoy!

Puzzle 3 (Hard, difficulty rating 0.75)

Puzzle 2 (Easy, difficulty rating 0.39)

Puzzle 1 (Medium, difficulty rating 0.55)

O IMNINIM O S0 | |0 w/ IO M |O O N |~ | O LIT IMNMIN |- |O AT OO |M |0 N | |O
[T |0 JO |O O N |M |~ OMOIN | IMNIWO | | O OIS | NJO |[H|O[N~]00 ™M \%f NSO [N |0 o |- |o
c c

Generated by http://www.opensky.ca/~jdhildeb/softwar e/sudokugen/ on Sat Oct 18 07:07:47 2008 GM T. Enjoy!

Puzzle 15 (Easy, difficulty rating 0.37)

Puzzle 14 (Medium, difficulty rating 0.53)

Puzzle 13 (Medium, difficulty rating 0.50)

MO |0 |~JN O IS @/ O IMMIN WO | Joo |© | OO LM |N O I | | OO |OJWL I NM ||
NINMNOIT [0 | |™M | OO | NI IO M |- |© < IMN[OfHA | O N |0 |0 N[O | | ||

Generated by http://www.opensky.ca/~jdhildeb/softwar e/sudokugen/ on Sat Oct 18 07:07:48 2008 GMT. Enjoy!

Puzzle 26 (M edium, difficulty rating 0.50) Puzzle 27 (Medium, difficulty rating 0.47)

Puzzle 25 (M edium, difficulty rating 0.56)

< ([N | JO IO O |- M| N[O |0 |0 |~ O || IM|O |O N WO |~ O IMNINIM O S0 | |0
NI ILDM|[O | |N O \“m/ OO IO | [N |M |0 N|IMNOIOL M |0 |O | OIM|[AIMN N[O T |O |O

Generated by http://www.opensky.ca/~jdhildeb/softwar e/sudokugen/ on Sat Oct 18 07:07:48 2008 GMT. Enjoy!

Puzzle 39 (Hard, difficulty rating 0.67)

Puzzle 38 (Easy, difficulty rating 0.45)

Puzzle 37 (Easy, difficulty rating 0.44)

mlt|old|v]o]a|~]lo] Elo|v|t|o|o|o|a|~|a] 8- |v ||~ |o|o]|o|m ol |[=]m|o|~n]w |~ |©
oo |[w]a |~ |t o |m |« m137482569 M467831529 m652179438
NN Ao |m|o o | |o W296715438 W389256417M738654129
814562793m428931657m546913782 sla]o|~]w|[m oo |< |«
Slolofs|o[~[=[o[w]| 5[[« [w[o[~[~]o [[« M721568934m463917285
657391482.m763854912.m893472651 ...m,185426397
173945628W572193846M\678124395 mﬁ\319745862
586723914%381246795m914385276m526893714
492618357M649578123M235697148M874261953
@
olm|old|~lolt|(an]|w] Slo|—|~]t[w]|o|a|o o] Sl [0 |w]m|o|a]a]o|~]]l |w|m]a]o oo |x [~
472653981.Mu854162937MQ13678254.M649715823
915248673%623879514 W726154839W728493516
724531869m342791658m837546912m972851364
o [o|w[o|«[o [« [~] 5|w[o[=[~[<[o][~[o o M159823476 Slxlol=lo[o[~[«~[o [0
863497512.m798536142W642917385.m385642791
587914236%486925371 W578239641M\534129678
346725198m279314865m264781593w217386459
291386754Dw._135687429Dw._391465728nw._896574132
wl|lo|njo ||~ |m]| o|ln|d]o |t |w]~]|m]|o —|m|w]ln|o oo ||~ t|o|ofo|~|w]m ||«
o|d|[m]o | |w]n]o |~ m863721495F\Ma./267184395m./578213964
478236195M457938162 .W948357612 .W312946758
oln|o]d|w |]m]|~]|© m.674513829W692813754W935461287
381729456m582469317M814795263M784329516
~w |t |o|o]o |d |~ ...m,139287654 Slo|~[o]s | |o]o|o|[=] Tlo|[a|[a]w[o|~]<|o|m
N|o|[w]s|~|[d]o|o|m mﬁ\796354281_.(r_\m,726941538m197632845
846593721m215876943m351678429m246758139
137682549%348192576Dw._489532176nw._853194672

Generated by http://www.opensky.ca/~jdhildeb/softwar e/sudokugen/ on Sat Oct 18 07:07:49 2008 GMT. Enjoy!

