
This is CS 50.
Harvard College Fall 2009

0 < 16

Problem Set 5: Forensics

due by 7:00pm on Fri 10/23

Goals.

• Better acquaint you with file I/O.
• Get you more comfortable with data structures, hexadecimal, and pointers.
• Introduce you to MSDN.
• Help Mr. Boddy.

Recommended Reading.

• Sections 21 – 26, 31, 32, 35, and 40 of http://www.howstuffworks.com/c.htm.
• Chapters 18, 24, 25, 27, and 28 of Absolute Beginner’s Guide to C.
• Chapters 9, 11, 14, and 16 of Programming in C.

• Sections 1 – 3 of http://en.wikipedia.org/wiki/BMP_file_format.
• Sections 1, 2, and 6 of http://en.wikipedia.org/wiki/Hexadecimal.
• Sections 1 – 5 and 7 of http://en.wikipedia.org/wiki/Jpg.

diff hacker5.pdf hacker5.pdf.

• Hacker Edition challenges you to reduce (and enlarge) BMPs.

This is CS 50.
Harvard College Fall 2009

1 < 16

Academic Honesty.

All work that you do toward fulfillment of this course’s expectations must be your own unless
collaboration is explicitly allowed (e.g., by some problem set or the final project). Viewing or copying
another individual’s work (even if left by a printer, stored in an executable directory, or accidentally
shared in the course’s virtual terminal room) or lifting material from a book, website, or other source—
even in part—and presenting it as your own constitutes academic dishonesty, as does showing or giving
your work, even in part, to another student.

Similarly is dual submission academic dishonesty: you may not submit the same or similar work to this
course that you have submitted or will submit to another. Nor may you provide or make available
solutions to problem sets to individuals who take or may take this course in the future. Moreover,
submission of any work that you intend to use outside of the course (e.g., for a job) must be approved
by the staff.

You are welcome to discuss the course’s material with others in order to better understand it. You may
even discuss problem sets with classmates, but you may not share code. In other words, you may
communicate with classmates in English, but you may not communicate in, say, C. If in doubt as to the
appropriateness of some discussion, contact the staff.

You may even turn to the Web for instruction beyond the course’s lectures and sections, for references,
and for solutions to technical difficulties, but not for outright solutions to problems on problem sets or
your own final project. However, failure to cite (as with comments) the origin of any code or technique
that you do discover outside of the course’s lectures and sections (even while respecting these
constraints) and then integrate into your own work may be considered academic dishonesty.

All forms of academic dishonesty are dealt with harshly.

Grades.

Your work on this problem set will be evaluated along three primary axes.

Correctness. To what extent is your code consistent with our specifications and free of bugs?
Design. To what extent is your code written well (i.e., clearly, efficiently, elegantly, and/or logically)?
Style. To what extent is your code readable (i.e., commented and indented with variables aptly named)?

This is CS 50.
Harvard College Fall 2009

2 < 16

Getting Started.

 Only a few checkboxes to go!

 SSH to nice.fas.harvard.edu and recursively copy ~cs50/pub/src/psets/hacker5/ into
~/cs50/. (Remember how?1) Then list the contents of ~/cs50/hacker5/. (Remember how?)
You should see the below.

 bmp/ jpg/ questions.txt

 As this output implies, most of your work for this problem set will be organized within two

subdirectories. Let’s get started.

 Surf on over to the URL below.

 http://www.cs50.net/surveys/pset5/

 Please take a few minutes to provide candid answers to the survey’s questions. Although you may

be prompted to authenticate, your answers, immediately upon submission, will be anonymized.
We will know that you took the survey, but we will not know which answers are yours.

 If you’ve ever seen Windows XP’s default wallpaper (think rolling hills and blue skies), then you’ve

seen a BMP. If you’ve ever looked at a webpage, you’ve probably seen a GIF. If you’ve ever
looked at a digital photo, you’ve probably seen a JPEG. Read up a bit on the BMP, GIF, and JPEG
file formats.2 Then, in ~/hacker5/questions.txt, tell us the below.

0. How many different colors does each format support?
1. Which of these formats supports animation?
2. What’s the difference between lossy and lossless compression?
3. Which of these formats is lossy-compressed?

1 It rhymes with `cp -r ~cs50/pub/src/psets/pset5 ~/cs50/`!
2 For this question, you’re welcome to consult How Computers Work, Google, Wikipedia, a friend, or anyone else, so long as
your words are ultimately your own!

This is CS 50.
Harvard College Fall 2009

3 < 16

 Curl up with the article from MIT below.

 http://www.computer.org/portal/cms_docs_security/security/v1n1/garfinkel.pdf

 Though somewhat technical, you should find the article’s language quite accessible. Once you’ve

read the article, answer each of the following questions in a sentence or more in
~/hacker5/questions.txt.

4. What happens, technically speaking, when a file is deleted on a FAT file system?
5. What can someone like you do to ensure (with high probability) that files you delete cannot

be recovered?

Whodunit.

 Welcome to Tudor Mansion. Your host, Mr. John Boddy, has met an untimely end—he’s the
victim of foul play. To win this game, you must determine the answer to these three questions:
Who done it? Where? And with what weapon?

 Unfortunately for you (though even more unfortunately for Mr. Boddy), the only evidence you

have is a 24-bit BMP file called clue.bmp, pictured below, that he whipped up for his estranged
granddaughter in his final moments.3 Hidden among this file’s red “noise” is a message from
Mr. Boddy.

3 Realize that this BMP is in color even though you might have printed this document in black and white.

This is CS 50.
Harvard College Fall 2009

4 < 16

 You long ago threw away that piece of red plastic from childhood that would solve this mystery for
you, and so you must attack it as the computer scientist that you almost are.

 But, first, some background.

 Perhaps the simplest way to represent an image is with a grid of pixels (i.e., dots), each of which

can be of a different color. For black-and-white images, we thus need 1 bit per pixel, as 0 could
represent black and 1 could represent white, as in the below.4

 In this sense, then, is an image just a bitmap (i.e., a map of bits). For more colorful images, you

simply need more bits per pixel. A file format (like GIF) that supports “8-bit color” uses 8 bits per
pixel. A file format (like BMP or JPEG) that supports “24-bit color” uses 24 bits per pixel.5

 A 24-bit BMP like Mr. Boddy’s uses 8 bits to signify the amount of red in a pixel’s color,

8 bits to signify the amount of green in a pixel’s color, and 8 bits to signify the amount of blue in a
pixel’s color. If you’ve ever heard of RGB color, well, there you have it: red, green, blue.

 If the R, G, and B values of some pixel in a BMP are, say, 0xff, 0x00, and 0x00 in hexadecimal, that

pixel is purely red, as 0xff (otherwise known as 255 in decimal) implies “a lot of red,” while 0x00
and 0x00 imply “no green” and “no blue,” respectively. Given how red Mr. Boddy’s BMP is, it
clearly has a lot of pixels with those RGB values. But it also has a few with other values.

 Incidentally, XHTML and CSS (languages in which webpages can be written) model colors in this

same way. In fact, for more RGB “codes,” see the URL below.

 http://www.w3schools.com/html/html_colors.asp

 Now let’s get more technical. Recall that a file is just a sequence of bits, arranged in some fashion.

A 24-bit BMP file, then, is essentially just a sequence of bits, (almost) every 24 of which happen to
represent some pixel’s color. But a BMP file also contains some “metadata,” information like an
image’s height and width. That metadata is stored at the beginning of the file in the form of two
data structures generally referred to as “headers” (not to be confused with C’s header files).6 The
first of these headers, called BITMAPFILEHEADER, is 14 bytes long. (Recall that 1 byte equals
8 bits.) The second of these headers, called BITMAPINFOHEADER, is 40 bytes long. Immediately

4 Image adapted from http://www.brackeen.com/vga/bitmaps.html.
5 BMP actually supports 1-, 4-, 8-, 16-, 24-, and 32-bit color.
6 Incidentally, these headers have evolved over time. This problem set only expects that you support version 4.0 (the latest) of
Microsoft’s BMP format, which debuted with Windows 95. Ah, Windows 95.

This is CS 50.
Harvard College Fall 2009

5 < 16

following these headers is the actual bitmap: an array of bytes, triples of which represent a pixel’s
color.7 However, BMP stores these triples backwards (i.e., as BGR), with 8 bits for blue, followed
by 8 bits for green, followed by 8 bits for red.8 In other words, were we to convert the 1-bit smiley
above to a 24-bit smiley, substituting red for black, a 24-bit BMP would store this bitmap as
follows, where 0000ff signifies red and ffffff signifies white; we’ve highlighted in red all
instances of 0000ff.

ffffff ffffff 0000ff 0000ff 0000ff 0000ff ffffff ffffff
ffffff 0000ff ffffff ffffff ffffff ffffff 0000ff ffffff
0000ff ffffff 0000ff ffffff ffffff 0000ff ffffff 0000ff
0000ff ffffff ffffff ffffff ffffff ffffff ffffff 0000ff
0000ff ffffff 0000ff ffffff ffffff 0000ff ffffff 0000ff
0000ff ffffff ffffff 0000ff 0000ff ffffff ffffff 0000ff
ffffff 0000ff ffffff ffffff ffffff ffffff 0000ff ffffff
ffffff ffffff 0000ff 0000ff 0000ff 0000ff ffffff ffffff

 Because we’ve presented these bits from left to right, top to bottom, in 8 columns, you can

actually see the red smiley if you take a step back.

 To be clear, recall that a hexadecimal digit represents 4 bits. Accordingly, ffffff in hexadecimal

actually signifies 111111111111111111111111 in binary.

 Okay, stop! Don’t proceed further until you’re sure you understand why 0000ff represents a red

pixel in a 24-bit BMP file.

 Okay, let’s transition from theory to practice. Navigate your way to ~/cs50/hacker5/bmp/. In
that directory is a file called smiley.bmp. If you feel like SFTPing that file to your desktop and
double-clicking it, you’ll see that it resembles the below, albeit much smaller (since it’s only 8
pixels by 8 pixels).

 Open this file in xxd, a “hex editor,” by executing the command below.

 xxd -c 24 -g 3 -s 54 smiley.bmp

7 In 1-, 4-, and 16-bit BMPs (but not 24- or 32-), there’s an additional header right after BITMAPINFOHEADER called
RGBQUAD, an array that defines “intensity values” for each of the colors in a device’s palette.
8 Some BMPs also store the entire bitmap backwards, with an image’s top row at the end of the BMP file. But we’ve stored this
problem set’s BMPs as described herein, with each bitmap’s top row first and bottom row last.

This is CS 50.
Harvard College Fall 2009

6 < 16

 You should see the below; we’ve again highlighted in red all instances of 0000ff.

0000036: ffffff ffffff 0000ff 0000ff 0000ff 0000ff ffffff ffffff
000004e: ffffff 0000ff ffffff ffffff ffffff ffffff 0000ff ffffff
0000066: 0000ff ffffff 0000ff ffffff ffffff 0000ff ffffff 0000ff
000007e: 0000ff ffffff ffffff ffffff ffffff ffffff ffffff 0000ff
0000096: 0000ff ffffff 0000ff ffffff ffffff 0000ff ffffff 0000ff
00000ae: 0000ff ffffff ffffff 0000ff 0000ff ffffff ffffff 0000ff
00000c6: ffffff 0000ff ffffff ffffff ffffff ffffff 0000ff ffffff
00000de: ffffff ffffff 0000ff 0000ff 0000ff 0000ff ffffff ffffff

 In the leftmost column above are addresses within the file or, equivalently, offsets from the file’s

first byte, all of them given in hex. Note that 00000036 in hexadecimal is 54 in decimal. You’re
thus looking at byte 54 onward of smiley.gif. Recall that a 24-bit BMP’s first 14 + 40 = 54 bytes
are filled with metadata. If you really want to see that metadata in addition to the bitmap,
execute the command below.

 xxd -c 24 -g 3 smiley.bmp

 If smiley.bmp actually contained ASCII characters, you’d see them in xxd’s rightmost column

instead of all of those dots.

 So, smiley.bmp is 8 pixels wide by 8 pixels tall, and it’s a 24-bit BMP (each of whose
pixels is represented with 24 ÷ 8 = 3 bytes). Each row (aka “scanline”) thus takes up
(8 pixels) × (3 bytes per pixel) = 24 bytes, which happens to be a multiple of 4. It turns out that
BMPs are stored a bit differently if the number of bytes in a scanline is not, in fact, a multiple of 4.
In small.bmp, for instance, is another 24-bit BMP, a green box that’s 3 pixels wide by 3 pixels
wide. If you feel like SFTPing that file to your desktop and double-clicking it, you’ll see that it
resembles the below, albeit much smaller.

This is CS 50.
Harvard College Fall 2009

7 < 16

 Each scanline in small.bmp thus takes up (3 pixels) × (3 bytes per pixel) = 9 bytes, which is not a
multiple of 4. And so the scanline is “padded” with as many zeroes as it takes to extend the
scanline’s length to a multiple of 4. In other words, between 0 and 3 bytes of padding are needed
for each scanline in a 24-bit BMP. (Understand why?) In the case of small.bmp, 3 bytes’ worth
of zeroes are needed, since (3 pixels) × (3 bytes per pixel) + (3 bytes of padding) = 12 bytes, which
is indeed a multiple of 4.

 To “see” this padding, go ahead and run the below.

 xxd -c 12 -g 3 -s 54 small.bmp

 Note that we’re using a different value for -c than we did for smiley.bmp so that xxd outputs

only 4 columns this time (3 for the green box and 1 for the padding). You should see output like
the below; we’ve highlighted in green all instances of 00ff00.

 0000036: 00ff00 00ff00 00ff00 000000
 0000042: 00ff00 ffffff 00ff00 000000
 000004e: 00ff00 00ff00 00ff00 000000

 For contrast, let’s use xxd on large.bmp, which looks identical to small.bmp but, at 12 pixels

by 12 pixels, is four times as large. Go ahead and execute the below; you may need to widen your
window to avoid wrapping.

 xxd -c 36 -g 3 -s 54 large.bmp

 You should see output like the below; we’ve again highlighted in green all instances of 00ff00

0000036: 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00
000005a: 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00
000007e: 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00
00000a2: 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00
00000c6: 00ff00 00ff00 00ff00 00ff00 ffffff ffffff ffffff ffffff 00ff00 00ff00 00ff00 00ff00
00000ea: 00ff00 00ff00 00ff00 00ff00 ffffff ffffff ffffff ffffff 00ff00 00ff00 00ff00 00ff00
000010e: 00ff00 00ff00 00ff00 00ff00 ffffff ffffff ffffff ffffff 00ff00 00ff00 00ff00 00ff00
0000132: 00ff00 00ff00 00ff00 00ff00 ffffff ffffff ffffff ffffff 00ff00 00ff00 00ff00 00ff00
0000156: 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00
000017a: 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00
000019e: 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00
00001c2: 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00

 Worthy of note is that this BMP lacks padding! After all, (12 pixels) × (3 bytes per pixel) = 36 bytes

is indeed a multiple of 4.

 Knowing all this has got to be useful!

 Okay, xxd only showed you the bytes in these BMPs. How do we actually get at them
programmatically? Well, in copy.c is a program whose sole purpose in life is to create a copy of a
BMP, piece by piece. Of course, you could just use cp for that. But cp isn’t going to help Mr.
Boddy. Let’s hope that copy.c does!

This is CS 50.
Harvard College Fall 2009

8 < 16

 Go ahead and compile copy.c into a program called copy. (Remember how?) Then execute a
command like the below.

 copy smiley.bmp copy.bmp

 If you then execute ls (with the appropriate switch), you should see that smiley.bmp and

copy.bmp are indeed the same size. Let’s double-check that they’re actually the same! Execute
the below.

 diff smiley.bmp copy.bmp

 If that command tells you nothing, the files are indeed identical.9 Feel free to SFTP the files to

your own desktop to confirm as much visually. But diff does a byte-by-byte comparison, so its
eye is probably sharper than yours!

 So how now did that copy get made? It turns out that copy.c relies on bmp.h. Let’s take a look.

Open up bmp.h (as with Nano), and you’ll see actual definitions of those headers we’ve
mentioned, adapted from Microsoft’s own implementations thereof. In addition, that file defines
BYTE, DWORD, LONG, and WORD, data types normally found in the world of Win32 (i.e., Windows)
programming. Notice how they’re just aliases for primitives with which you are (hopefully)
already familiar. It appears that BITMAPFILEHEADER and BITMAPINFOHEADER make use of
these types. This file also defines a struct called RGBTRIPLE that, quite simply, “encapsulates”
three bytes: one blue, one green, and one red (the order, recall, in which we expect to find RGB
triples actually on disk).

 Why are these structs useful? Well, recall that a file is just a sequence of bytes (or, ultimately,

bits) on disk. But those bytes are generally ordered in such a way that the first few represent
something, the next few represent something else, and so on. “File formats” exist because the
world has standardized what bytes mean what. Now, we could just read a file from disk into RAM
as one big array of bytes. And we could just remember that the byte at location[i] represents
one thing, while the byte at location [j] represents another. But why not give some of those
bytes names so that we can retrieve them from memory more easily? That’s precisely what the
structs in bmp.h allow us to do. Rather than think of some file as one long sequence of bytes,
we can instead think of it as a sequence of structs.

9 Note that some programs (e.g., Photoshop) including trailing zeroes at the ends of some BMPs. Our version of copy throws
those away, so don’t be too worried if you try to copy a BMP (that you’ve downloaded or made) only to find that the copy is
actually a few bytes smaller than the original.

This is CS 50.
Harvard College Fall 2009

9 < 16

 Recall that smiley.bmp is 8 by 8 pixels, and so it should take up 14 + 40 + 8 ∙ 8 ∙ 3 = 246 bytes on
disk. (Confirm as much if you’d like using ls.) Here’s what it thus looks like on disk according to
Microsoft:

offset type name
0 WORD bfType
2 DWORD bfSize
6 WORD bfReserved1
8 WORD bfReserved2
10 DWORD bfOffBits

 BITMAPFILEHEADER

14 DWORD biSize
18 LONG biWidth
22 LONG biHeight
26 WORD biPlanes
28 WORD biBitCount
30 DWORD biCompression
34 DWORD biSizeImage
38 LONG biXPelsPerMeter
42 LONG biYPelsPerMeter
46 DWORD biClrUsed
50 DWORD biClrImportant

 BITMAPINFOHEADER

54 BYTE rgbtBlue
55 BYTE rgbtGreen
56 BYTE rgbtRed

 RGBTRIPLE

57 BYTE rgbtBlue
58 BYTE rgbtGreen
59 BYTE rgbtRed

 RGBTRIPLE

...

243 BYTE rgbtBlue
244 BYTE rgbtGreen
245 BYTE rgbtRed

 RGBTRIPLE

 As this figure suggests, order does matter when it comes to structs’ members. Byte 57 is

rgbtBlue (and not, say, rgbtRed), because rgbtBlue is defined first in RGBTRIPLE.10

 Now go ahead and pull up the URLs to which BITMAPFILEHEADER and BITMAPINFOHEADER are

attributed, per the comments in bmp.h. You’re about to start using MSDN (Microsoft Developer
Network)!

 Rather than hold your hand further on a stroll through copy.c, we’re instead going to ask you

some questions and let you teach yourself how the code therein works. As always, man is your
friend, and so, now, is MSDN. If not sure on first glance how to answer some question, do some
quick research and figure it out! You might want to turn to the below resource as well.

 http://www.cs50.net/resources/cppreference.com/stdio/

10 Our use, incidentally, of the __attribute__ called __packed__ ensures that GCC does not try to “word-align” members
(whereby the address of each member’s first byte is a multiple of 4), lest we end up with “gaps” in our structs that don’t
actually exist on disk.

This is CS 50.
Harvard College Fall 2009

10 < 16

 Allow us to suggest that you also run copy within GDB while answering these questions. Set a
breakpoint at main and walk through the program. Recall that you can tell GDB to start running
the program with a command like the below.

 run smiley.bmp copy.bmp

 If you tell GDB to print the values of bf and bi (once read in from disk), you’ll see output like the

below, which we daresay you’ll find quite useful.

 {bfType = 19778, bfSize = 246, bfReserved1 = 0, bfReserved2 = 0,
 bfOffBits = 54}

 {biSize = 40, biWidth = 8, biHeight = -8, biPlanes = 1, biBitCount = 24,
 biCompression = 0, biSizeImage = 192, biXPelsPerMeter = 2834,
 biYPelsPerMeter = 2834, biClrUsed = 0, biClrImportant = 0}

 In ~/cs50/hacker5/questions.txt, answer each of the following questions in a sentence or

more.

6. How many bytes is a BYTE, a DWORD, a LONG, and a WORD, respectively?11
7. What (in ASCII, decimal, or hexadecimal) must the first two bytes of any BMP file be?12
8. What’s the difference between bfSize and biSize?
9. What does it mean if biHeight is negative?
10. What field in BITMAPINFOHEADER specifies the BMP’s color depth (i.e., bits per pixel)?
11. Why might fopen return NULL in copy.c:32?
12. Why is the third argument to fread always 1 in our code?
13. What value does copy.c:69 assign padding if bi.biWidth is 3?
14. What does fseek do?
15. What is SEEK_CUR?

 Okay, back to Mr. Boddy.

 Write a program called whodunit in a file called whodunit.c that reveals Mr. Boddy’s final
words.

 OMG, what? How?

 Well, think back to childhood when you held that piece of red plastic over similarly hidden

messages.13 Essentially, the plastic turned everything red but somehow revealed those messages.
Implement that same idea in whodunit. Like copy, your program should accept exactly two
command-line arguments. And if you execute a command like the below, stored in verdict.bmp
should be a BMP in which Mr. Boddy’s message is actually legible.

 whodunit clue.bmp verdict.bmp

11 Assume a 32-bit x86 architecture like nice.fas.harvard.edu.
12 Leading bytes used to identify file formats (with high probability) are generally called “magic numbers.”
13 If you remember no such piece of plastic, best to ask a friend or TF about his or her childhood.

This is CS 50.
Harvard College Fall 2009

11 < 16

 Allow us to suggest that you begin tackling this mystery by executing the command below.

 cp copy.c whodunit.c

 Wink wink. You may be amazed by how few lines of code you actually need to write in order to

help Mr. Boddy.

 There’s nothing hidden in smiley.bmp, but feel free to test your program out on its pixels

nonetheless, if only because that BMP is small and you can thus compare it and your own
program’s output with xxd during development.14

 Rest assured that more than one solution is possible. So long as your program’s output is readable

(by your teaching fellow), no matter its color(s), Mr. Boddy will rest in peace.

 Be sure to check in your code often with RCS! (You’d better remember how.) And use GDB!

 In ~/hacker5/questions.txt, answer the question below.

16. Whodunit? And where? And with what?

 Well that was fun. Bit late for Mr. Boddy, though.

 Let’s have you write more than, what, two lines of code? Implement now in resize.c a program

called resize that resizes 24-bit uncompressed BMPs by a factor of f. Your program should
accept exactly three command-line arguments, per the below usage, whereby the first (f) must be
a floating-point value in (0.0, 100.0), the second the name of the file to be resized, and the third
the name of the resized version to be written.

 Usage: resize f infile outfile

 With a program like this, we could have created large.bmp out of small.bmp by resizing the

latter by a factor of 4.0 (i.e., by multiplying both its width and it s height by 4.0), per the below.15

 resize 4.0 small.bmp large.bmp

 You’re welcome to get started by copying (yet again) copy.c and naming the copy resize.c.

But spend some time thinking about what it means to resize a BMP, particularly if f is
in (0.0, 1.0).16,17 How you handle floating-point imprecision and rounding is entirely up to you, as
is how you handle inevitable loss of detail. Decide which of the fields in BITMAPFILEHEADER and
BITMAPINFOHEADER you might need to modify. Consider whether or not you’ll need to add or
subtract padding to scanlines.

14 Or maybe there is a message hidden in smiley.bmp too. No, there’s not. Though maybe there is. No. Maybe.
15 And yet we used Photoshop.
16 You may assume that f times the size of infile will not exceed 232 – 1.
17 As for f = 1.0, the result should indeed be an outfile with dimensions identical to infile’s.

This is CS 50.
Harvard College Fall 2009

12 < 16

 If you’d like to play with the staff’s own implementation of resize on nice.fas.harvard.edu,
you may execute the below.18

 ~cs50/pub/solutions/hacker5/resize

CSI.19

 Alright, now let’s put all your new skills to the test.

 Just the other day, I took a stroll around campus with a friend (Dan Armendariz of MIT, whose

skills with a camera outshine my point-and-shoot tendencies) snapping photos, all of which were
stored as JPEGs on a 1GB CompactFlash (CF) card. Rather than act like typical tourists, taking
photos of John Harvard’s foot (ugh) and squirrels (I mean, really), we opted to shoot identifiable
but non-obvious persons, places, and things on campus.

 Unfortunately, I somehow corrupted that CF card the moment I got home.20 Both my Mac and PC

refuse to recognize the card now as having any photos, even though I’m pretty sure we took them.
Both operating systems want to format the card, but, thus far, I’ve refused to let them, hoping
instead someone can come to the rescue.

 Write a program in ~/cs50/hacker5/jpg/ called recover that recovers these photos.

(Please!)

 Oh not again. What?

 Well, here’s the thing. Even though JPEGs are more complicated than BMPs, JPEGs have

“signatures,” patterns of bytes that distinguish them from other file formats. In fact, most JPEGs
begin with one of two sequences of bytes. Specifically, the first four bytes of most JPEGs are
either

 0xff 0xd8 0xff 0xe0

 or

 0xff 0xd8 0xff 0xe1

 from first byte to fourth byte, left to right. Odds are, if you find one of these patterns of bytes on

a disk known to store photos (e.g., my CF card), they demark the start of a JPEG.21

 Fortunately, digital cameras tend to store photographs contiguously on CF cards, whereby each

photo is stored immediately after the previously taken photo. Accordingly, the start of a JPEG
usually demarks the end of another. However, digital cameras generally initialize CF cards with a

18 We’ve not made solutions available for this problem set’s other programs, lest they spoil the forensic fun.
19 Computer Science Investigation
20 I’m not very technical.
21 To be sure, you might encounter these patterns on some disk purely by chance, so data recovery isn’t an exact science.

This is CS 50.
Harvard College Fall 2009

13 < 16

FAT file system whose “block size” is 512 bytes (B). The implication is that these cameras only
write to those cards in units of 512 B. A photo that’s 1 MB (i.e., 1,048,576 B) thus takes up
1048576 ÷ 512 = 2048 “blocks” on a CF card. But so does a photo that’s, say, one byte smaller
(i.e., 1,048,575 B)! The wasted space on disk is called “slack space.” Forensic investigators often
look at slack space for remnants of suspicious data.

 The implication of all these details is that you, the investigator, can probably write a program that

iterates over a copy of my CF card, looking for JPEGs’ signatures. Each time you find a signature,
you can open a new file for writing and start filling that file with bytes from my CF card, closing
that file only once you encounter another signature. Moreover, rather than read my CF card’s
bytes one at a time, you can read 512 of them at a time into a buffer for efficiency’s sake. Thanks
to FAT, you can trust that JPEGs’ signatures will be “block-aligned.” That is, you need only look for
those signatures in a block’s first four bytes.

 Realize, of course, that JPEGs can span contiguous blocks. Otherwise, no JPEG could be larger

than 512 B. But the last byte of a JPEG might not fall at the very end of a block. Recall the
possibility of slack space. Fortunately, I bought a brand-new CF card for my stroll about campus.
Odds are, that CF card was “zeroed” (i.e., filled with 0s) by the manufacturer. Because I didn’t
outright delete any photos we took, the only bits on that CF card should belong to actual photos
or be 0s. And it’s okay if some trailing 0s (i.e., slack space) end up in the JPEGs your program spits
out; they should still be viewable.

 Since I’ve but one CF card, I’ve gone ahead and created a “forensic image” of the card, storing its

contents, byte after byte, in a file called card.raw in ~cs50/pub/share/hacker5/. So that
you don’t waste time iterating over millions of 0s unnecessarily, I’ve only imaged the first 9.1 MB
of the CF card. Since you’re only going to be reading it, you don’t need your own copy of this
forensic image. (Might as well save space!) Simply open our copy with fopen via its full path, as
in the below.22

 FILE *fp = fopen("/home/c/s/cs50/pub/share/hacker5/card.raw", "r");

 You should find that this image contains 51 JPEGs, all of which are less than 250 KB in size.23

 Notice, incidentally, that ~/cs50/hacker5/jpg/ is empty. It’s up to you to create, at least, a

Makefile and recover.c for this program. You probably don’t need a recover.h, but you’re
welcome to create one. For simplicity, you may hard-code the path to card.raw in your
program; your program need not accept any command-line arguments. When executed, though,
your program should recover every one of the JPEGs from card.raw, storing each as a separate
file in your current working directory. Your program should number the files it outputs by naming
each ###.jpg, where ### is three-digit decimal number from 000 on up. (Befriend sprintf.)
You need not try to recover the JPEGs’ original names. To check whether the JPEGs your program

22 It’s fine to hard-code this path into your program rather than define it as some constant.
23 Some, um, might not actually have been taken on my stroll.

This is CS 50.
Harvard College Fall 2009

14 < 16

spit out are correct, simply SFTP them to your own desktop, double-click, and take a look.24 If
each photo appears intact, your operation was likely a success!

 Odds are, though, the JPEGs that the first draft of your code spits out won’t be correct. (If you

open them up and don’t see anything, they’re probably not correct!) Execute the command
below to delete all JPEGs in your current working directory.25

 rm *.jpg

 If you’d rather not be prompted to confirm each deletion, execute the command below instead.

 rm -f *.jpg

 Just be careful with that -f switch, as it “forces” deletion. Be sure to check in your code often

with RCS, especially since you’ll likely be executing rm quite a bit!

 And now the proverbial icing on the cake. You are hereby challenged to find as many of the
persons, places, and things that we photographed on campus as possible. To prove that you
found some place or thing, take a photo of yourself (or of someone in your section) posing next to
or near that same person, place, or thing!26 Put your section’s photos (i.e., the photos you took,
not the ones that we took that you recovered) online somewhere (e.g., Google PicasaWeb) and
link to those photos on a Google Map that indicates where you found each person, place, or
thing.27 Then have your TF email your map’s URL to heads@cs50.net by 11:59pm on Fri 11/20!

 Here’s how to create a map for your section:

 Creating a Map
 http://maps.google.com/support/bin/answer.py?hl=en&answer=68480#overview_my_maps

 Adding Photos
 http://maps.google.com/support/bin/answer.py?hl=en&answer=68480#photos

 The section whose students collectively identify the most photographs shall win an amazing

prize.28 The TFs did not accompany me on my stroll, so yours is welcome to join forces with you
on this quest. In the event of a tie, the section that submits the most photos (and their URL) first
shall be declared Fall 2009’s winner.

24 To SFTP files means to transfer them (e.g., from your FAS account to your own desktop) via an SFTP client, a program that
“speaks” a protocol known as SFTP. Mac users should download CyberDuck under Software on the course’s website; PC users
should download SecureFX from the same. (Though you are welcome to use other clients as well.) Instructions for both clients
can be found under Resources on the course’s website.
25 If informed by nice.fas.harvard.edu that you are “over quota” (i.e., taking up more space than you’re allowed), odds are
you’ll want to free up space in this same way.
26 Happy Cat does not actually need to be in the photo with you.*
* Ken is not Happy Cat.
27 You should probably nominate someone(s) in your section to take charge.
28 Prize may not actually be amazing.

This is CS 50.
Harvard College Fall 2009

15 < 16

Submitting Your Work.

 Don’t forget to submit your survey!

 http://www.cs50.net/surveys/pset5/

 Ensure that your work is in ~/cs50/hacker5/. Submit your work by executing the command

below.

 cs50submit hacker5

 Thereafter, follow any on-screen instructions until you receive visual confirmation of your work’s

successful submission. You will also receive a “receipt” via email to your FAS account, which you
should retain until term’s end. You may re-submit as many times as you’d like; each resubmission
will overwrite any previous submission. But take care not to re-submit after the problem set’s
deadline, as only your latest submission’s timestamp is retained.

