This is CS 50.
Harvard College Fall 2009

Problem Set 8: Mashup

due by 7:00pm on Fri 11/13
Lest you have heard scary things, allow me to confess that Fall 2008’s Problem Set 8 was harder
than intended. (Don’t, um, tell Fall 2008’s students.) Fall 2009’s version is new and improved,
a much better finale. Don’t drop it!
Goals.
. Introduce you to XML, RSS, JavaScript, and Ajax.

. Expose you to objects and methods.
. Have you learn a real-world API.

Recommended Reading.

i http://www.w3schools.com/xml/

i http://www.w3schools.com/rss/

i http://www.w3schools.com/Js/

i http://en.wikipedia.org/wiki/Ajax (programming)

i http://en.wikipedia.org/wiki/JSON

NOTICE.

For this problem set, you are welcome and encouraged to consult “outside resources,” including books,
the Web, strangers, and friends, as you teach yourself more about XHTML, CSS, PHP, SQL, and
JavaScript, so long as your work overall is ultimately your own. In other words, there remains a line,
even if not precisely defined, between learning from others and presenting the work of others as your
own.

You may adopt or adapt snippets of code written by others (whether found in some book, online, or
elsewhere), so long as you cite (in the form of XHTML, CSS, PHP, or JavaScript comments) the origins
thereof.

And you may learn from your classmates, so long as moments of counsel do not devolve into “show me

your code” or “write this for me.” You may not, to be clear, examine the source code of classmates.
If in doubt as to the appropriateness of some discussion, contact the staff.

0<16

This is CS 50.
Harvard College Fall 2009

Academic Honesty.

All work that you do toward fulfillment of this course’s expectations must be your own unless
collaboration is explicitly allowed (e.g., by some problem set or the final project). Viewing or copying
another individual's work (even if left by a printer, stored in an executable directory, or accidentally
shared in the course’s virtual terminal room) or lifting material from a book, website, or other source—
even in part—and presenting it as your own constitutes academic dishonesty, as does showing or giving
your work, even in part, to another student.

Similarly is dual submission academic dishonesty: you may not submit the same or similar work to this
course that you have submitted or will submit to another. Nor may you provide or make available
solutions to problem sets to individuals who take or may take this course in the future. Moreover,
submission of any work that you intend to use outside of the course (e.g., for a job) must be approved
by the staff.

You are welcome to discuss the course’s material with others in order to better understand it. You may
even discuss problem sets with classmates, but you may not share code. In other words, you may
communicate with classmates in English, but you may not communicate in, say, C. If in doubt as to the
appropriateness of some discussion, contact the staff.

You may even turn to the Web for instruction beyond the course’s lectures and sections, for references,
and for solutions to technical difficulties, but not for outright solutions to problems on problem sets or
your own final project. However, failure to cite (as with comments) the origin of any code or technique
that you do discover outside of the course’s lectures and sections (even while respecting these
constraints) and then integrate into your own work may be considered academic dishonesty.

All forms of academic dishonesty are dealt with harshly.

Grades.
Your work on this problem set will be evaluated along three primary axes.
Correctness. To what extent is your code consistent with our specifications and free of bugs?

Design. To what extent is your code written well (i.e., clearly, efficiently, elegantly, and/or logically)?
Style. To what extent is your code readable (i.e., commented and indented with variables aptly named)?

1<16

This is CS 50.
Harvard College Fall 2009

Getting Started.

O

O

Last problem set EVER.

For this problem set, consider downloading and installing Firefox, Firebug, Live HTTP Headers, and
Web Developer (in that order), each of which is available on the course’s website under Software.
Once installed, Firebug, Live HTTP Headers, and Web Developer will appear as options in Firefox’s
Tools menu. See if you can figure out how they each work, simply by playing. Odds are you’ll find
that all are valuable (though not necessary for this problem set).

For this problem set, your work must ultimately behave the same on at least two major browsers:

Google Chrome 2.x

Firefox 3.x

Internet Explorer 7.x or 8.x
Opera 9.x

Safari 4.x

OoOooog

Be sure, then, to test your work thoroughly with at least two browsers. It is fine, though, to rely
on just one operating system. And it’s fine if you notice slight aesthetic differences between the
two browsers. Make sure that your teaching fellow knows which browsers to use whilst
evaluating your work.

SSH to cloud.cs50.net and recursively copy ~cs50/pub/src/psets/pset8/ into your own
~/public_html/ directory. (Remember how?) Then cd to ~/public html/pset8/.
(Remember how?) Then run 1s. You should see the below.

constants.php index.html mashup.js proxy.php
import logo.gif progress.gif styles.css

All of the work that you do for this problem set will reside in ~/public html/pset8/. Go
ahead and chmod your files as follows. (Remember how?)

O constants.php and proxy.php should be readable and writable only by you
U import should be readable, writable, and executable only by you
[0 everything else should be readable and writable by you and only readable by everyone else

Now open up constants.php with Nano (or your favorite text editor) and notice that the values of
three variables (DB_NAME, DB_USER, and DB_PASS) are currently missing. Fill in the blanks with

the same values you used for Problem Set 7 (i.e., those from http://www.cs50.net/me/).

Now head to the URL below, where username is your own username.’ You should see a map!?

http://cloud.cs50.net/~username/pset8/

! Note that this URL is equivalentto http://www.cs50.net/~username/pset8/index.html.
2 The search box won’t yet work!

2<16

This is CS 50.
Harvard College Fall 2009

Google Mashup.

1 Your mission for this problem set is to implement a mashup that integrates Google Maps with
Google News with a MySQL database containing 42,086 zip codes (and more). But first, some
inspiration!

If you’ve a friend who owns a Nintendo Wii (that’s connected to the Internet), see if you can invite
yourself over there to do some “research.” Ask your friend to start up the News Channel, then
click National News with the Wiimote, then click any of the articles, then click Globe in the
screen’s bottom-right corner. Notice how you can spin the Earth by clicking A and dragging,
thereby revealing stacks of articles from different cities and geographic areas. And by zooming in
and out with + and —, you can reveal more or fewer stacks. By clicking a stack’s icon, you can then
read local news.

If you haven’t said friend, watch this instead, paying close attention between 01:04 and 01:50:

http://www.youtube.com/watch?v=u06J8ryTKYk

The challenge ahead isn’t to implement precisely that interface but the spirit thereof in the
(largely) two-dimensional world of Google Maps. Specifically, your mashup will present users with
a Google Map, atop which will be a form. Upon submitting an address via that form, users will be
whisked away to that location on the map, which will be sprinkled with markers representing
news articles pertaining to the five (or fewer) largest cities within view. Clicking a marker will
trigger a balloon to appear, inside of which will be links to those articles. Having trouble
envisioning all that? Take a peek at the staff’s solution, which (unlike your version at the moment)
is fully functional:

http://cloud.cs50.net/~cs50/pset8/

By problem set’s end, you too will have a tool whose URL you can share with family and friends
back home (that they might actually find useful)!

Alright, where to begin?

L0 Surf on over to Google Maps at http://maps.google.com/. Input something like
Cambridge, MA or 02138 into the page’s form and click Search Maps. You should find yourself
whisked away to a familiar area. Well that was easy. Notice, though, that the page’s URL did not
change. | wonder how they did that.?

Now input 28.410, -81.584 instead. Perhaps you’d rather be there?

It looks like Google Maps knows about cities, states, and zip codes as well as GPS coordinates
(i.e., longitude and latitude). Interesting.

3Coughcough,Ajax.

3<16

This is CS 50.
Harvard College Fall 2009

Better yet, Google Maps has an API via which we can embed and control maps in our own sites:
http://code.google.com/apis/maps/

But more on that in a bit. If unfamiliar with longitude and latitude, incidentally, feel free to read
up, albeit in more detail than is necessary for this problem set:

http://en.wikipedia.org/wiki/Longitude
http://en.wikipedia.org/wiki/Latitude

If only it were as easy to find the latest news in Cambridge as it is to find maps! Actually, maybe it
is. Surf on over to Google News at http://news.google.com/. Click the link to Advanced
news search to the right of the search box, and notice how you can Return only articles about a
local area. Input something like Cambridge, MA or 02138, and you should see news local to
Cambridge. Take a look at that webpage’s source code, though, as by selecting View Source (or
the like) from, probably, your browser’s View menu. Quite the mess, huh? Can’t be much fun to
try to “screen-scrape” all that XHTML, CSS, and JavaScript (by writing a program to parse it) in
order to extract articles’ titles and URLs for our mashup. Let’s look for an easier way.

Close the window containing the webpage’s source code and scroll to the bottom of the webpage
itself. Ooo, an RSS link (to the right of the orange icon)! Click that icon or link. Odds are you'll see
a webpage with a bunch of articles related to Cambridge. But it's not really a webpage. It's
actually an RSS “feed” that your browser is presenting to you as though it were a webpage
(because most browsers today are also RSS “readers”).

Just like XHTML, RSS is a tag-based markup language. (Both are flavors of XML.) Whereas XHTML
is used to structure and stylize webpages, though, RSS is used to syndicate news (and blog posts,
tweets, and the like). What'’s nice about RSS is that it’s simple to parse. In fact, RSS is an acronym
for “Really Simple Syndication” (though some people prefer “Rich Site Summary”).

Here’s what an RSS feed generally looks like (sans data):

<rss version="2.0">
<channel>
<title></title>
<description></description>
<link></link>
<item>
<guid></guid>
<title></title>
<link></link>
<description></description>
<category></category>
<pubDate></pubDate>
</item>
[...]
</channel>
</rss>

4<16

This is CS 50.
Harvard College Fall 2009

In other words, an RSS feed contains a root element called rss, the child of which is an element
called channel. Inside of channel are elements called title, description, and link,
followed by one or more elements called item, each of which represents an article (or blog post,
tweet, or the like). Each item, meanwhile, contains elements called guid, title, link,
description, category, and pubDate. Of course, between most of these start tags and end
tags should be actual data (e.g., an article’s actual title). If you’d like to learn more, head to:

http://cyber.law.harvard.edu/rss/rss.html
Yup, Harvard’s own law school hosts the specification for the latest version of RSS.

When you clicked Google’s RSS link, then, your browser downloaded a dynamically generated RSS
feed, parsed it, and then displayed it as though it were XHTML (so that you can click each article’s
link). If you try to view the page’s source, you’ll see either XHTML or RSS; it depends on your
browser.

Anyhow, take notice of the URL to which Google’s RSS link led you (which, unfortunately, wraps
on to two lines):*

http://news.google.com/news?pz=1l&cf=all&ned=uss&hl=en&as scoring=r&geo=02138&as ma
xm=11l&as gdr=a&as_ drrb=qg&as mind=6&as minm=10&cf=allsas maxd=5&output=rss

Within that otherwise cryptic string should be a familiar value (i.e., 02138). Interesting. | bet
we’ll be able to fetch (via PHP) an RSS feed for any zip code we want simply by altering the value
of the parameter called geo, after which we can parse the RSS (very easily) with PHP. Interesting,
indeed.

More on that, too, in a bit.

1 Alright, clearly we can search for and pan to different cities via Google Maps. And we can also
fetch articles about cities via Google News. But, after panning to some city, how do we figure out
the five largest cities within view? If only we had a big list of cities, states, zip codes, GPS
coordinates, and population counts to tie everything together...

[0 Turnsout we do! Look what we found with a bit of Googling.
http://www.zip-codes.com/zip-code-database.asp
Look how much data you can get for $79.95.> Don’t worry, we’ll pick up the tab. Notice, though,

that the data comes in multiple formats, among them CSV.° That’s perfect, because we can easily
parse that programmatically!’

4Don’tworryifyourbrowserchangeshttp://tofeed://.

> Why go Standard when you can have Deluxe? Actually, we wanted population counts, so we got upsold.
6http://en.wikipedia.org/wiki/Comma—separated_values

’ Keep an eye out for such things in the future!

5<16

This is CS 50.
Harvard College Fall 2009

To get a sense of what we bought, download this sample:

http://www.zip-codes.com/files/sample database/zip-codes-database-DELUXE-SAMPLE.zip

Inside that archive, you’ll find a file called zip-codes-database-DELUXE-SAMPLE.csv (among
others). Go ahead and open it with Excel (or any old text editor). Notice that the database
contains 50 fields (i.e., columns), each of which is defined for you in the CSV file’s first row. If you
open up ZipCodeDatabaseSpecifications-Deluxe.pdf from that same archive, you’ll find
that pages 2 and 3 elaborate on those fields’ types. That same PDF, for reference, is available at
the URL below.

http://www.zip-codes.com/files/documents/ZipCodeDatabaseSpecifications-Deluxe.pdf

You're welcome to examine the actual CSV file that we bought, but you may find that its 80,114
rows won’t fit in some versions of Excel:®

http://www.cs50.net/pub/share/pset8/zip-codes-database-DELUXE.csv

By default, incidentally, Excel doesn’t show leading zeroes in CSV files. And so some of the zip
codes in these CSV files’ first columns might appear to be fewer than five digits, even though they
are not. If you open those same files with any old text editor, you’ll see leading zeroes!

[0 Okay, so we can get maps from Google Maps, news from Google News, and zip codes (and more)
from Zip-codes.com. It’s time to start wiring these puzzle pieces together with a bit of PHP and
JavaScript! That CSV file is a bit unwieldy, though, with its 80,114 rows. Moreover, you can’t
really search a CSV file (other than by iterating over each of its rows, a la Linear Search). So let’s
begin by importing that data into a MySQL database, where we can search for cities via SELECT.

O Thanks to its 80,114 rows and 50 columns, the CSV file we bought is 31 MB. Yet most of those
fields you won’t even need. Interesting though it may be to know how many Hawaiians lived in
02138 as of the 2000 Census, you don’t really need to know that for this problem set.” Let’s save
some time and space by importing into a MySQL database only the fields that we need.

But let’s use the right tool for the job. It's a pain to parse text files in C, so let’s use PHP instead.

8 Someone decided to limit older versions of Excel to 2*° = 65,536 rows (and 28=256 columns)!
° But the answer is 25!

6<16

This is CS 50.
Harvard College Fall 2009

Implement in ~/public_html/pset8/import, a “script” (i.e., an interpreted program) that
imports these fields (and only these fields) from zip-codes-database-DELUXE.csv into a
MysQL database:™

i ZipCode

ii. Population
iii. Latitude
iv. Longitude
V. State

vi. City

The table into which you import these fields should be called zips, and it must live in a database
called username pset8 that we’ve pre-created for you. Your table’s fields, meanwhile, should
be named (and capitalized) just as they are in the CSV file: zipCode, Population, Latitude,
Longitude, State, and City. You may connect to your database using the same username
(DB_USER) and password (DB_PASS) that you used for Problem Set 7.

What data types to use for each of your fields? Look at page 2 of 16 of that PDF from
Zip-codes.com (i.e., ZipCodeDatabaseSpecifications-Deluxe.pdf) for some hints. Take
care not to allocate more space than you need to for fields. And go ahead and define zZipCode as
a PRIMARY key. Realize, though, that some rows in the CSV file are nearly identical. (Apparently,
some cities have aliases.) So take care to import only those rows that Zip-codes.com considers
“primary records.” Ignore all non-primary records.

How to determine whether some row is a primary record? Again consult page 2 of 16 of that PDF
for a discussion of PrimaryRecord. But there’s no need to import PrimaryRecord itself into
your table.

Once you have a schema (i.e., design) in mind, you’ll, of course, need to CREATE the table,
certainly before you can INSERT any rows into to with your script. You are welcome to CREATE
the table “at runtime” via a call to mysql query in your own script or in advance via
phpMyAdmin. Recall that phpMyAdmin is available at the URL below.

https://cs50.net/phpMyAdmin/

You'll probably want to use phpMyAdmin quite a bite while developing your script. Odds are
you’ll make a mistake at least once and want to ALTER or DELETE rows from your table so as to
start fresh. You’ll likely find phpMyAdmin’s Browse, Structure, SQL, Empty, and/or Drop tabs of
particular help.

Note, incidentally, that we did not ask you to name your script import.php. Whereas
webservers generally require that PHP scripts’ names end in .php for execution, your shell
(i.e., your prompt) only requires that they start with a “shebang,” # followed by !, followed by the
full path to php (PHP’s interpreter).

10 ¢ you find, while implementing your mashup, that you would like to make use of other fields from the CSV file, you may
modify import and zips to accommodate. For space’s sake, though, do not import more fields than you actually plan to use.

7<16

This is CS 50.
Harvard College Fall 2009

How to find that full path? Execute the below.
which php

Aha! You should see that php lives in /usr/bin/php on cloud.cs50.net. Go ahead, then,
and put precisely this line atop import:™

#!/usr/bin/php

Take care not to put any characters at all (even whitespace) before this shebang. Even with the
shebang present, you still need to tell php to interpret what follows as actual code (rather than
just text, a la XHTML, that should be outputted raw). The second line of your file should thus be:

<?

And your last line should be:

2>

Somewhere between those tags you’ll want to have a line like

require once ("constants.php");
so that you have access to those constants you defined earlier.

Okay, implement import! Rather than access that CSV file via its URL on c¢s50.net, though, read
from the cloud’s local copy in /home/cs50/pub/share/pset8/ (much like you did card.raw
for Problem Set 5 and words for Problem Set 6). After all, networks are even slower than disks.
Odds are, you’ll want to befriend PHP functions like fopen, fgetcsv, and fclose. And don’t
forget old friends like mysgl connect, mysgl select db, mysgl query, and
mysqgl fetch assoc.

Once done, you should be able to populate that table called zips in username pset8 by
executing the command below after chmod’ing import 700:"

./import /home/cs50/pub/share/pset8/zip-codes-database-DELUXE.csv

As this usage implies, you should accept one (and only one) command-line argument: the path to
a file to import. You might thus want to read up on, at least, Sargv:

http://php.net/manual/en/reserved.variables.argv.php

Incidentally, you might want to try importing a much smaller file than ours first, lest you fill your
table with thousands of mistakes. Just fill a text file with some values and commas!

11Alternatively,youcouldomittheshebangandexewteimportwith‘/usr/bin/php import . Butdon’t.

21ps annoying to type such long paths character by character, so do take advantage of tab completion:
http://en.wikipedia.org/wiki/Command line completion

8<16

This is CS 50.
Harvard College Fall 2009

Even though zip-codes-database-DELUXE.csv contains 80,114 rows, you should find that it
contains only 42,086 primary records, so your MySQL table, ultimately, should have 42,086 rows.

Once you’ve imported all 42,086 primary records, leave zips alone. You'll need it later.

1 Okay, let’s take a tour of the rest of this problem set’s distro. Open up index.html first. It's this
file that you saw when you visited http://cloud.cs50.net/~username/pset8/ earlier.

Notice how the head element loads three files into memory. The first, styles.css, contains
some CSS classes and selectors. The third, mashup.js, contains some JavaScript, which you’ll
soon augment with more. The second, meanwhile, comes from Google and implements (part of)
the Google Maps API. In fact, if you’d like to see a whole lot of obfuscated JavaScript, pull up that
URL (which, unfortunately, wraps on to two lines) in a browser:

http://maps.google.com/maps?file=api&v=2& sensor=false& key=ABQIAAAA8ig
Yd929VTmOEMLNINyP1xQIEAMyTYdagiM5EsVAZOBbaRM1YRS9jJaf64VoDAABOTCl- zJ-d13vg

Notice that one of the parameters in that URL is called key, the value of which is a long, cryptic
string. We were given that string by Google when we signed up to use the API on
cloud.cs50.net via the form here:*

http://code.google.com/apis/maps/signup.html

Now take a look at the body element below head. Notice how it registers two event handlers
(i.e., functions) for when the page loads and unloads; both are defined in mashup.js. The page
itself is structured with four div elements. Atop the page is a logo, below which is a form. That
form doesn’t actually lead anywhere (i.e., the value of action is empty), but submission thereof
does induce a call to go, a function defined in mashup.js. Below the form is a progress indicator
that’s hidden by default. To see what you’re missing, head to

http://cloud.cs50.net/~username/pset8/progress.gif

where username is your own username. Cute, eh? We made it ourselves.* The last div in
index.html is just a placeholder for Google’s map. Notice that we assigned to each div a
unique id so that we can address each in styles.css and mashup. js.

O Now take a peek at styles.css. Mostly aesthetics in there; some comments explain. You’re
welcome to make changes as you see fit.

Bf you use the same APl on your own server some day, you’ll need to sign up for your own key. No need to sign up for the
API for this problem set; we’ve done so for you.
* Not true.

9<16

This is CS 50.
Harvard College Fall 2009

1 Alright, now open mashup.js. It's on this file that you’ll soon focus most of your attention. But
for now, let’s get a sense of what’s there.

Atop this file are a few global variables, one of which defines some GPS coordinates. Let’s
personalize your map. Find the GPS coordinates of your hometown. This site (or perhaps Google
or Wikipedia) might help:

http://itouchmap.com/latlong.html
Modify the definition of home accordingly, save your changes, and then return to

http://cloud.cs50.net/~username/pset8/
and reload. If you don’t see your home, time to double-check your hometown’s coordinates.

Neat, eh? Okay, let’s skim the rest of mashup.js. It looks like we've written a function called
addMarker whose purpose in life is to add a marker (i.e., red icon) at a given point (i.e., GLatLng)
that, when clicked, shows some XHTML. Sounds useful.

Ah, next in the file is that function called go; looks like we’ve left most of its implementation to
you.

Next up is load, that function that gets called the moment index.html is loaded. It looks like it’s
this function that installs Google’s map inside that div placeholder, though there’s still work to be
done in a bit.

Below load is resize, a function we wrote to resize your map anytime you alter the dimensions
of your browser’s window.

And then there’s unload, which unloads Google’s map.

Finally there’s update, whose purpose in life is to lay down markers for the five (or fewer) largest
cities within view. Looks like it also plants a marker atop your hometown. But it looks like it
doesn’t (yet) fetch any articles, but, before long, it’s this function that will be making Ajax calls to

proxy.php.
| It's now time to open up proxy.php. (How’s that for a segue!) Much like we implemented a
proxy to Yahoo Finance for you last week, so have we implemented a proxy to Google News."

Whereas Problem Set 7’s proxy was was a function (1ookup), this proxy lives on the Web at

http://cloud.cs50.net/~username/pset8/proxy.php

so that you can query it via Ajax. Let’s see what it does.

> pon’t worry if our proxy returns articles that are slightly older than those listed at Google News itself. The cloud caches
responses from news . google.com for a few minutes in order to reduce load on Google’s servers.

10<16

This is CS 50.
Harvard College Fall 2009

Open up proxy.php with Nano. This proxy first connects to your MySQL database and then
declares an (empty) associative array. It then checks that it’s been passed two parameters
(sw and ne), each of which should be a comma-separated pair of floating-point values. In other
words, this proxy expects to be queries like this one (which, unfortunately, wraps on to two lines):

http://cloud.cs50.net/~username/pset8/proxy.php?sw=42.34382782918463,
-71.19930267333984&ne=42.40799515480466,-71.03038787841797

Together, sw and ne define a map’s bounds, a rectangle defined by the GPS coordinates of a
map’s bottom-left and top-right coordinates, respectively. As you may have guessed, proxy.php
proceeds to use those coordinates to determine the five (or fewer) largest cities within view
(i.e., within bounds). And it does so by querying zips, that table you made! It then queries
Google News for articles about each of those cities, thereafter parsing Google’s RSS using PHP’s
SimpleXML APL.* Ultimately, the proxy returns a JavaScript array with (up to) five JavaScript
objects within, each of which represents a city, within which is a JavaScript array of articles. In
other words, the proxy returns JSON!*’

It’s a bit hard to picture all those arrays, so let’s look at some actual JSON. If you haven’t already,
go ahead and pull up this URL (or similar) in your browser, where, as always, username is your
own username:

http://cloud.cs50.net/~username/pset8/proxy.php?sw=42.34382782918463,
-71.19930267333984&ne=42.40799515480466,-71.03038787841797

Wow, what a mess. Let’s try pretty-printing that same output. Head to

http://www.cerny-online.com/cerny.js/demos/json-pretty-printing

in a separate window, paste into that page’s Input box all of that JSON, then click Print pretty.
Much clearer output, no?

If you scroll down, you should see that the five largest cities between 42.34382782918463,
-71.19930267333984 and 42.40799515480466,-71.03038787841797 are Cambridge
(02138), Somerville (02143), Boston (02108), Brighton (02135), and Everett (02149). Each city is
represented as a JavaScript object (per the { and } around each); together, they compose a
JavaScript array (per the [and] in which they’re enclosed). Within each object are six keys (and
values): ZipCode, City, State, Latitude, Longitude, and articles, the last of whose
values is a JavaScript array, each of whose members is a JavaScript object with two keys (1ink and
title) and values. Realize that we created this structure in PHP using associative arrays,
thereafter converting our structure to JSON via json_encode.18 Though confusing at first (and
maybe second) glance, what’s nice about JSON is just how compact it is. Consider how much
more verbose RSS is!

1 http://php.net/manual/en/book.simplexml.php

17GeneraHy,youshouId output a MIME type of application/json for JSON, but we're using text/plain so that you can
see the proxy’s output in your browser.

® PHP does support objects, but associative arrays whose keys are non-numeric are treated as though they are objects anyway
by json_encode, so the end result is the same.

11<16

This is CS 50.
Harvard College Fall 2009

Alright, it’s your turn again. At the moment, your map is rather lacking in features:

http://cloud.cs50.net/~username/pset8/

You can’t toggle between Map, Satellite, and Hybrid mode as you can with the real Google Maps.
And you can’t even zoom! Let’s fix. Head to the URL below for some background on the Google
Maps API:

http://code.google.com/apis/maps/documentation/introduction.html

Don't fret if you don’t understand everything. That page should paint a reasonable picture of how
the API works, though. Allow me to suggest that you click View example wherever you see it
(thereafter viewing the example’s source code), as you might find it easier to learn from examples
than from the documentation’s prose. Next head to

http://code.google.com/apis/maps/documentation/controls.html

and read up on the “controls” that you can add to your map. Go ahead and add at least one
control to your map. Odds are you’ll want to modify 1oad in mashup.js. Feel free to customize
your map further as you see fit!

Incidentally, you may find this Google Maps APl Reference helpful as you proceed:

http://code.google.com/apis/maps/documentation/reference.html

Okay, it’s time to make your search box work. Go ahead and read up on Google’s “geocoding”
service at:

http://code.google.com/apis/maps/documentation/services.html#Geocoding
You can probably stop reading after clicking View example (geocoding-simple.html).

Now make that search box work! Specifically, empower users to search for and pan to a particular
city by inputting an address (however precise or imprecise) into your search box. Rely on
Google’s geocoding service for this feature; do not try to query your own zips table or contact
our proxy. Unlike our proxy (which is designed to find the five largest cities within some bounds),
Google’s geocoding service is designed to convert addresses (however precise or imprecise) to
GPS coordinates (i.e., GLatLng objects).

Odds are you’ll want to incorporate base your implementation of go in mashup. js on the source

code for geocoding-simple.html. But no need to plant a marker like geocoding-
simple.html does.

12<16

This is CS 50.
Harvard College Fall 2009

1 Alright, you’re in the home stretch now. It’s time to finish your mashup.

At the moment, your search box only whisks the user away to their desired location. But notice
that go already calls update, unless you deleted that line, in which case it’s time to go add it
back! But, at the moment, update only plants one marker for your hometown. It's time to plant
up to five more, one for each of the largest cities within view. Clicking one of those markers
should trigger an info window (i.e., balloon) to appear, the contents of which are the city’s name
plus some links to breaking news in that area.” Although the formatting thereof is entirely up to
you, you're welcome to look to the staff’s solution for inspiration:

http://cloud.cs50.net/~cs50/pset8/

You may also want to refer back to Week 9’s Ajax examples for hints on how to contact our
proxy.”’ And don’t forget that we’ve written an addMarker function for you. (Did you notice that
we ourselves used it to plant your hometown’s marker?)

Oh, don’t forget about that progress indicator that’s hidden by default! Take care to reveal that
progress indicator whenever your code is waiting for our proxy to respond to a query from you;
hide it again once you’ve received a response.

[0 And now for a personal touch. Head to

http://www.ajaxload.info/

and generate your own progress indicator. Click Download it!, rename it progress.gif, and
then wupload it via SFTP to ~/public html/pset8/, overwriting the distro’s own
progress.gif. Take care to chmod your version 644 if necessary. Head back to

http://cloud.cs50.net/~username/pset8/

and reload the page. Perform a search and ensure that you see your new indicator. (If it’s not
aligned quite as well as the original, you may need to tweak styles.css.) All set?

Ah. Such a tacky note to end on.
O Under no circumstances should your mashup generate JavaScript runtime errors. (Be sure to

check functions’ return values as is appropriate!) For help chasing down bugs in your JavaScript
code, incidentally, you may find FireBug’s Console tab invaluable.

% No need to worry about race conditions, whereby the user induces multiple Ajax calls at once (as by searching too fast or
resizing their window too much).

20 Alternatively, you’re welcome to use Google’s GXm1Ht tp object:
http://code.google.com/apis/maps/documentation/services.html#XML Requests

13<16

This is CS 50.
Harvard College Fall 2009

Submitting Your Work.

O

O

Don’t forget that your work must behave the same in at least two major browsers!

Ensure that your work is in ~/public_html/pset8/. Then execute the command below, where
username iS your own username, in order to dump your database to disk for us; input your
database’s password (i.e., the value of DB_PASS) when prompted.

mysgldump -u username -p username pset8 > ~/public html/pset8/username pset8.sqgl
Now submit your work by executing the command below.

cs50submit pset8

Thereafter, follow any on-screen instructions until you receive visual confirmation of your work’s
successful submission. You may re-submit as many times as you’d like; each resubmission will
overwrite any previous submission. But take care not to re-submit after the problem set’s
deadline, as only your latest submission’s timestamp is retained.

For simplicity, your TF may want to examine your code in situ, so don’t modify your work even
after you submit without first checking with your TF.

14<16

This is CS 50.
Harvard College Fall 2009

kthxbai

15<16

