
This is CS 50.
Harvard College Fall 2009

0 < 16

Quiz 0
out of 55 points

Print your name on the line below.

Do not turn this page over until told by the staff to do so.

This quiz is “closed-book.” However, you may utilize during the quiz one two-sided
page (8.5" × 11") of notes, typed or written, and a pen or pencil, nothing else.

Scrap paper is included toward this document’s end.

Unless otherwise noted, assume that any problems herein refer to C.

Please circle your section leader’s name.

Andrew Sellergren

Batool Ali

Dan Nevius

David Robinson

Derek Lietz

Doug Lloyd

Drew Robb

Filip Zembowicz

Jesse Cohen

John Selig

Jon Noronha

Jonathan Yip

Josh Bolduc

Karim Atiyeh + Thomas Prufer

Ken Parreno

Kent Rakip

Lee Evangelakos

Marta Bralic

Matthew Chartier

Michelle Konstadt

Mike Teodorescu

Mike Tucker

Nathan Leiby

Patrick Quinn

Rose Cao

Saba Zaidi

Ted Rogers

Yuhki Yamashita

This is CS 50.
Harvard College Fall 2009

1 < 16

for staff use only

final score out of 55

This is CS 50.
Harvard College Fall 2009

2 < 16

Multiple Choice.

For each of the following questions or statements, circle the letter (a, b, c, or d) of the one response that
best answers the question or completes the statement; you need not explain your answers.

0. (0 points.) Which is Happy Cat?

 a. b.

 c. d.

1. (1 point.) What is the running time of binary search on a (sorted) phonebook with n pages?

 a. O(1)
 b. O(log n)
 c. O(n)
 d. O(n2)

2. (1 point.) How many bits are in a byte?

 a. 2
 b. 8
 c. 16
 d. 32

3. (0 points.) Gur nafjre vf p.

 a. n
 b. o
 c. p
 d. q

for staff use only

 –

This is CS 50.
Harvard College Fall 2009

3 < 16

4. (1 point.) If the value of a char, c, is '0', which line of code converts c to an int, n, whose
integral value is 0?

 a. int n = (int) c;
 b. int n = atoi(c);
 c. int n = (int) c – 'A';
 d. int n = (int) c – '0';

True or False.

For each of the statements below, circle T if the statement is true or F if the statement is false.

5. T F (1 point.) make is a compiler.
6. T F (1 point.) All .c files must have a main function.
7. T F (1 point.) Double ROT13 is less secure than triple DES.
8. T T (0 points.) I wish I lived in Mather House.

Short Answers.

9. (2 points.) Recall the implementation of Bubble Sort from lecture, below.

 Repeat n times:
 For each element i:
 If element i and its neighbor are out of order:
 Swap them.

 Even though we know Bubble Sort to be in Ω(n), this particular implementation is in Ω(n2). In the

space below, re-implement Bubble Sort in pseudocode in such a way that your version is in Ω(n).
Any form of pseudocode suffices; you need not mimic our style or syntax.

for staff use only

 –

This is CS 50.
Harvard College Fall 2009

4 < 16

10. (2 points.) If global variables are accessible by all functions anyway, why not declare all variables
as global rather than use local variables at all?

11. (2 points.) Recall the algorithm from lecture below.

1. Stand up.
2. Think to yourself “I am #1.”1
3. Pair off with someone standing, add your numbers together, and adopt
 the sum as your new number.
4. One of you should sit down, the other should go back to step 3.

 Explain why this algorithm, if n students execute it together, is in O(log n).

12. (2 points.) Recall that the formula for conversion from Celsius, C, to Fahrenheit, F, is:

 C = (5/9) × (F – 32)

 Consider the implementation of this formula in C (the language, not the temperature scale) below:

 float c = (5/9) * (f - 32);

 No matter the value of f, this code always assigns c a value of 0.0, even if the value of f,

a float, is a much warmer temperature (e.g., 212.0). In no more than two sentences,
explain why.

 Re-implement the formula correctly below with just one line of code. Assume that f has already

been declared as a float. We’ll get you started:

 float c =

1 Not after this quiz!*

* jk!

for staff use only

 –

This is CS 50.
Harvard College Fall 2009

5 < 16

13. (2 points.) Recall that CS50’s library defines GetInt, a function that gets an int from a user,
pestering him or her to retry if the user fails to provide only an int (surrounded, perhaps, by
whitespace). Recall the actual implementation of GetInt, below, whose comments (so sadly) did
not make it to press.

int
GetInt()
{
 while (true)
 {
 string line = GetString();
 if (line == NULL)
 return INT_MAX;

 int n; char c;
 if (sscanf(line, " %d %c", &n, &c) == 1)
 {
 free(line);
 return n;
 }
 else
 {
 free(line);
 printf("Retry: ");
 }
 }
}

 Explain precisely how this function detects whether a user has provided only an int (surrounded

by nothing other than, perhaps, whitespace). Put another way, explain precisely how this function
detects whether a user has provided something other than an int.

for staff use only

 –

This is CS 50.
Harvard College Fall 2009

6 < 16

Pointer Fun with Binky.2

14. (3 points.) Below are three lines of code, alongside which are depictions thereof. You may recall

that Binky drew these same pictures with clay.

int *x;

int *y;

x = malloc(sizeof(int));

 Perhaps needless to say, the oval represents an int on the heap, and each rectangle represents a

pointer (not on the heap). Below are three more lines of code whose depictions are not yet
complete. Complete the depictions by drawing arrows and/or numbers as the code dictates.

*x = 42;

y = x;

*y = 13;

2 Excerpted from document 106 in the Stanford CS Education Library. This and other free materials
are available at cslibrary.stanford.edu.

for staff use only

 –

This is CS 50.
Harvard College Fall 2009

7 < 16

15. (3 points.) Now we’ve a picture but no code! In the space at left below, write a few lines of code
that collectively create this picture in memory. As before, each oval represents an int on the
heap, and each rectangle represents a pointer (not on the heap).

sizeof.

16. (3 points.) Recall that sizeof returns the size, in bytes, of a data type. Complete the table

below, one of whose rows we’ve plucked off for you. Assume a 32-bit x86 architecture like
nice.fas.harvard.edu.

sizeof(char)

sizeof(char *)

sizeof(int) 4

sizeof(int *)

sizeof(long)

sizeof(long long)

sizeof(float)

for staff use only

 –

This is CS 50.
Harvard College Fall 2009

8 < 16

Rapid Fire.

Answer the questions below in no more than three sentences each.3

17. (1 point.) Why do we say that GetString, defined in CS 50’s library, can induce memory leaks?

18. (1 point.) Why ever use switch, given that you can implement the same functionality using if,

else if, and else?

19. (1 point.) Why is Vigenère’s cipher said to be stronger than Caesar’s?

20. (1 point.) How can buffer overflow attacks be prevented?

3 Don’t make us count!

for staff use only

 –

This is CS 50.
Harvard College Fall 2009

9 < 16

Swap Time.

21. (4 points.) Consider the definition of a student below.

 typedef struct student
 {
 char *name;
 char *house;
 }
 student;

 Suppose that some student’s been Quaded and (obviously) wants to transfer to Mather. The only

way to do so, though, is to trade rooms with a Matherite. Let’s tell this same story in code:

 student a;
 a.name = "Jon";
 a.house = "Mather";

 student b;
 b.name = "Mike";
 b.house = "Currier";

 swap(&a, &b);

 printf("%s now lives in %s.\n", a.name, a.house);
 printf("%s now lives in %s.\n", b.name, b.house);

 Mike desperately hopes the above prints these strings:

 Jon now lives in Currier.
 Mike now lives in Mather.

 But he needs you to implement swap! Complete its implementation below. Take care not to

segfault or to send anyone to Dunster.

void
swap(

for staff use only

 –

This is CS 50.
Harvard College Fall 2009

10 < 16

“GCC hates me.”

22. (2 points.) Suppose that Doug sees the warning below when he tries to compile his code.

 implicit declaration of function 'printf'

 Explain what the problem must be and how Doug can fix it.

23. (2 points.) Suppose that Michelle sees the error below when she tries to compile her code.

 undefined reference to `GetInt'

 Explain what the problem must be and how Michelle can fix it.

24. (1 point.) Suppose that Rose sees the message below when she tries to run foo.

 Segmentation fault (core dumped)

 Explain what the problem might be.

for staff use only

 –

This is CS 50.
Harvard College Fall 2009

11 < 16

Two Lists.

25. (3 points.) Consider the below depiction of a doubly linked list.

 Suppose that each of the five nodes in this list is of type node and each of the numbers is of

type int. Complete the below declaration of node in a manner consistent with this depiction.

 typedef struct node
 {

 }
 node;

26. (4 points.) For each algorithm below, specify an upper (O) and lower (Ω) bound on its running

time. Assume that the linked lists and arrays in question are all of length n.

Algorithm O Ω

inserting into a sorted singly linked list

searching a sorted singly linked list

sorting a sorted array with Selection Sort

sorting an unsorted array with Merge Sort

for staff use only

 –

This is CS 50.
Harvard College Fall 2009

12 < 16

C meets PHP.

27. (6 points.) PHP, a language we’ll look at later this term, has a function called ucwords that

capitalizes the first letter of each word in a string. That’s just too exciting. Let’s implement it now
in C.

 Complete the implementation of ucwords below. Rather than modify s itself, ucwords should

instead return a copy of s with the first letter of each word in that copy capitalized (if not already);
all other characters, no matter their case, should remain unchanged.4 For simplicity, assume that
between each pair of adjacent words in s will be a single space (' '), that s will not begin or end
with spaces, and that all characters in s will be alphabetical (or spaces). For instance, we might
pass your function "homer j simpson" or "homer J simpson" (both of which should
become "Homer J Simpson") or even "hOmEr j sImPsOn" (which should become
"HOmEr J SImPsOn"), but we won’t pass it "homer j. simpson" (because of the period). Do
not assume that s will contain only two or three words; it may contain zero or more. And s may
very well be NULL. (D’oh!) You are welcome to call any function you know to exist in C;
no need to #include any header files.

 char *
 ucwords(const char *s)
 {

4 We’ve declared s as const (i.e., constant) to emphasize that you should not modify s itself.
But that doesn’t mean you can’t make a copy of it!

for staff use only

 –

This is CS 50.
Harvard College Fall 2009

13 < 16

Distant Memory.

28. (4 points.) Included at the end of this quiz is fifteen.c from Problem Set 3’s distro. Suppose

that we paused execution of fifteen within move() (as via a breakpoint using GDB). Without
worrying about specific addresses, tell us where each of board (line 33), d (line 34),
tile (line 89), and tile (line 176) can be found in memory, generally speaking, by jotting down
each of those symbols in the appropriate space below. For example, we’ve noted where argc and
argv can be found. For symbols that belong in the same general area, do not worry about order
(e.g., we could have written argc to the right of argv). Because line 89’s and line 176’s symbols
are identically named, make clear somehow which one goes where.

text

initialized data

uninitialized data

heap
↓

move()

move()'s parameters

main()

main()'s parameters

 argc argv

↑
stack

environment variables

for staff use only

 –

This is CS 50.
Harvard College Fall 2009

14 < 16

Extra Noncredit.

29. (0 points.) What does the program below print when executed?

 main() { char *s="main() { char *s=%c%s%c; printf(s,34,s,34); }"; printf(s,34,s,34); }

kthxbai

http://xkcd.com/138/

This is CS 50.
Harvard College Fall 2009

15 < 16

Scrap Paper.

Nothing on this page will be examined by the staff unless otherwise directed in the space provided for
some question.

fifteen.c 1/2

1: /***
2: * fifteen.c
3: *
4: * Computer Science 50
5: * Problem Set 3
6: *
7: * Implements The Game of Fifteen (generalized to d x d).
8: *
9: * Usage: fifteen d

10: *
11: * whereby the board’s dimensions are to be d x d,
12: * where d must be in [DIM_MIN,DIM_MAX]
13: *
14: * Note that usleep is obsolete, but it offers more granularity than
15: * sleep and is simpler to use than nanosleep; ‘man usleep‘ for more.
16: ***/
17:
18: #define _XOPEN_SOURCE 500
19:
20: #include <cs50.h>
21: #include <stdio.h>
22: #include <stdlib.h>
23: #include <time.h>
24: #include <unistd.h>
25:
26:
27: // constants
28: #define DIM_MIN 3
29: #define DIM_MAX 9
30:
31:
32: // global board
33: int board[DIM_MAX][DIM_MAX];
34: int d;
35:
36:
37: // prototypes
38: void clear();
39: void greet();
40: void init();
41: void draw();
42: bool move();
43: bool won();
44:
45:
46: int
47: main(int argc, char *argv[])
48: {
49: // greet user with instructions
50: greet();
51:
52: // ensure proper usage
53: if (argc != 2)
54: {
55: printf("Usage: %s d\n", argv[0]);
56: return 1;
57: }
58:
59: // ensure valid dimensions
60: d = atoi(argv[1]);
61: if (d < DIM_MIN || d > DIM_MAX)
62: {

63: printf("Board must be between %d x %d and %d x %d, inclusive.\n",
64: DIM_MIN, DIM_MIN, DIM_MAX, DIM_MAX);
65: return 2;
66: }
67:
68: // initialize the board
69: init();
70:
71: // accept moves until game is won
72: while (true)
73: {
74: // clear the screen
75: clear();
76:
77: // draw the current state of the board
78: draw();
79:
80: // check for win
81: if (won())
82: {
83: printf("ftw!\n");
84: break;
85: }
86:
87: // prompt for move
88: printf("Tile to move: ");
89: int tile = GetInt();
90:
91: // move if possible, else report illegality
92: if (!move(tile))
93: {
94: printf("\nIllegal move.\n");
95: usleep(500000);
96: }
97:
98: // sleep thread for animation’s sake
99: usleep(500000);

100: }
101:
102: // that’s all folks
103: return 0;
104: }
105:
106:
107: /*
108: * void
109: * clear()
110: *
111: * Clears screen using ANSI escape sequences.
112: */
113:
114: void
115: clear()
116: {
117: printf("\033[2J");
118: printf("\033[%d;%dH", 0, 0);
119: }
120:
121:
122: /*
123: * void
124: * greet()

fifteen.c 2/2

125: *
126: * Greets player.
127: */
128:
129: void
130: greet()
131: {
132: clear();
133: printf("WELCOME TO THE GAME OF FIFTEEN\n");
134: usleep(2000000);
135: }
136:
137:
138: /*
139: * void
140: * init()
141: *
142: * Initializes the game’s board with tiles numbered 1 through d*d - 1
143: * (i.e., fills 2D array with values but does not actually print them).
144: */
145:
146: void
147: init()
148: {
149: // TODO
150: }
151:
152:
153: /*
154: * void
155: * draw()
156: *
157: * Prints the board in its current state.
158: */
159:
160: void
161: draw()
162: {
163: // TODO
164: }
165:
166:
167: /*
168: * bool
169: * move(int tile)
170: *
171: * If tile borders empty space, moves tile and returns true, else
172: * returns false.
173: */
174:
175: bool
176: move(int tile)
177: {
178: // TODO
179: return false;
180: }
181:
182:
183: /*
184: * bool
185: * won()
186: *

187: * Returns true if game is won (i.e., board is in winning configuration),
188: * else false.
189: */
190:
191: bool
192: won()
193: {
194: // TODO
195: return false;
196: }

