
Computer Science 50
Fall 2010
Scribe Notes

Week 1 Friday: September 10, 2010
Andrew Sellergren

Contents

1 Announcements (0:00–5:00) 2

2 From Last Time (5:00–9:00) 2

3 Some Simple Math (9:00–42:00) 3
3.1 math1.c . 3
3.2 math2.c . 3
3.3 math3.c . 4
3.4 math4.c . 5
3.5 math5.c . 5
3.6 sizeof.c . 6
3.7 f2c.c . 7

4 Programming Constructs of C (42:00–68:00) 8
4.1 Conditions . 8

4.1.1 conditions1.c . 9
4.1.2 conditions2.c . 10

4.2 Boolean Expressions . 11
4.2.1 nonswitch.c . 11

4.3 The switch Statement . 12
4.3.1 switch1.c . 12

4.4 Loops . 14
4.4.1 progress1.c . 14
4.4.2 progress2.c . 15
4.4.3 progress3.c . 16
4.4.4 positive1.c . 17
4.4.5 positive2.c . 18
4.4.6 positive3.c . 19

1

Computer Science 50
Fall 2010
Scribe Notes

Week 1 Friday: September 10, 2010
Andrew Sellergren

1 Announcements (0:00–5:00)

• This is CS50.

• 1 new handout.

• If you’re ready to, you can return Scratch boards with a slip of paper
including your name and HUID and one other piece of information that I
can’t read on the chalkboard.

• Supersections, open to students of all comfort levels, begin on Sunday.
Check the course website for times and locations. If you can’t make any
of them, not to worry, one will be filmed.

• The first walkthrough will be this Sunday at 7 PM. One of the teaching
fellows will show you how to get started on this week’s problem set. If
you plan on attending, you would do well to read through the problem set
specification beforehand.

• Thanks for joining us! Enrollment has never been higher:

2007 283
2008 330
2009 336
2010 525

Most of you are sophomores (43%), but the remainder of you are well
apportioned among the freshman, junior, senior classes. Also, 38% of you
are women, more than ever before!

• This will be our last Friday lecture ever!

2 From Last Time (5:00–9:00)

• Writing a program in C consists of three main steps, each represented by
a command:

1. nano hello.c

2. gcc -o hello hello.c -lcs50

3. ./hello

Recall that Nano is one of many text editors available (including Vim
and Emacs) and GCC is one of many compilers available. The -o switch
tells GCC to name the output file something other than the default a.out
and the -lcs50 switch tells GCC to link in the CS50 library. Some other
flags include -lm, which links in the math.h library and -lncurses, which
links in the ncurses.h library, a graphic library for C. In step 3, we
actually execute our hello program, being careful to prepend ./ so that
the computer knows to look in the present working directory to find the
binary.

2

Computer Science 50
Fall 2010
Scribe Notes

Week 1 Friday: September 10, 2010
Andrew Sellergren

3 Some Simple Math (9:00–42:00)

3.1 math1.c

• Let’s try doing some math in math1.c:

/**
* math1.c
*
* Computer Science 50
* David J. Malan
*
* Computes a total but does nothing with it.
*
* Demonstrates use of variables.
***/

#include <stdio.h>

int
main()
{

int x = 1;
int y = 2;
int z = x + y;

}

• One bit of confusion that might arise from the code above is that = is
actually the assignment operator. When we write x = 2, we’re assigning
the value 2 to x, not asking if 2 equals x. To ask if x equals 2, we write
x == 2.

• A rule of thumb: any line of C code which constitutes a statement must
be terminated by a semicolon.

• If we compile and run this program, nothing happens. Is it working prop-
erly? In fact, it is, but it gives no output since we haven’t told it to. Our
next version, math2.c will actually print out the result of our computation
using the function printf and the formatting character %d.

3.2 math2.c

• To save ourselves some time at the command line, we’ll begin now to use
the command make. make takes as an argument the name of the program
we wish to create which doesn’t include the .c suffix.

• When we run make math2 from the command line, we see the following
output:

3

Computer Science 50
Fall 2010
Scribe Notes

Week 1 Friday: September 10, 2010
Andrew Sellergren

gcc -ggdb -std=c99 -Wall -Werror -Wformat=0 math2.c -lcs50 \
-lm -o math2

As you can see, make is actually shorthand for a much longer command
and, by default, it’s including the CS50 library and the math.h library.

• The -ggdb flag enables debugging symbols so that you can walk through
your program while it’s executing using a debugging program called GDB.
For the next week or so, however, printf will be your friend as you debug
your code. When in doubt, print out some variables because they might
not have the value you think they do.

• -std=C99 sets the compiler to use the C99 standard. You don’t need to
know the details here, but realize that this version of C has some modern
conveniences that other versions don’t.

• All of the -W flags tell GCC to be nitpicky about errors, reporting any and
all of them so that you will write the best, most secure code possible.1

• When we run math2, we see the output of 3, but it runs together with the
command-line prompt. This is because we didn’t add a \n character at
the end of our printf string.

3.3 math3.c

• You might think that arithmetic operators are pretty straightforward, but
take a look at math3.c to find out why you’re DEAD WRONG:2

/**
* math3.c
*
* Computer Science 50
* David J. Malan
*
* Computes and prints a floating-point total.
*
* Demonstrates loss of precision.
***/

#include <stdio.h>

int
main()
{

1Yes, it’s annoying, but someday you’ll miss C when you compare two variables of different
types and wonder why your program runs just fine, but doesn’t work.

2“Don’t you ever get tired of being wrong?”

4

Computer Science 50
Fall 2010
Scribe Notes

Week 1 Friday: September 10, 2010
Andrew Sellergren

float answer = 17 / 13;
printf("%.2f\n", answer);

}

If we compile and run this program we get 1.00 as output. What went
wrong? Well, the way we’ve written it, the numbers 17 and 13 are being
stored as integers. When you divide one integer by another in C, the
answer will always be an integer. Thus, even though there’s a remainder
when we divide 17 by 13, it gets chopped off when the answer is stored as
an integer.

• What about the .2f? With this syntax, we’re specifying the number of
digits (2) after the decimal point that will be displayed.

3.4 math4.c

• If we instead write 17.0 and/or 13.0, then the compiler will store them
as floating-point values. We see this in math4.c, which gives an answer
(rounded to two digits) of 1.31.

3.5 math5.c

• Instead of writing 17.0 and 13.0, we can also explicitly cast the numbers
17 and 13 as float’s. Casting compels a given variable type to be forcibly
converted into another. We do this with the following syntax, seen in
math5.c:

/**
* math5.c
*
* Computer Science 50
* David J. Malan
*
* Computes and prints a floating-point total.
*
* Demonstrates use of casting.
***/

#include <stdio.h>

int
main()
{

float answer = 17 / (float)13;
printf("%.2f\n", answer);

}

5

Computer Science 50
Fall 2010
Scribe Notes

Week 1 Friday: September 10, 2010
Andrew Sellergren

Casting will become useful when we want to convert between alphabetic
characters and numbers, as with ASCII. If you want to turn the number
65 into the letter ‘A,’ for instance, you need only cast that int to a char.
You’ll be introduced to this for Problem Set 2.

3.6 sizeof.c

• Let’s take a look at some different variable types with sizeof.c:

/**
* sizeof.c
*
* Computer Science 50
* David J. Malan
*
* Reports the sizes of C’s data types.
*
* Demonstrates use of sizeof.
***/

#include <stdio.h>

int
main()
{

// some sample variables
char c;
double d;
float f;
int i;

// report the sizes of variables’ types
printf("char: %d\n", sizeof(c));
printf("double: %d\n", sizeof(d));
printf("float: %d\n", sizeof(f));
printf("int: %d\n", sizeof(i));

}

The function sizeof gives us the number of bytes required to store each
of these variable types. For historical reasons, a long is 4 bytes, the same
as an int. How big a number can an int store? If it’s unsigned, meaning
it can’t store negatives, it can store up to the number 4 billion. Although
this may sound like a lot, a maximum number of 4 billion might present
a problem in industries like finance or biology. In fact, allocating too few
bits to a variable is an unfortunate problem we’ve seen before with the
Y2K bug. There is, at least, the capacity to store larger numbers with

6

Computer Science 50
Fall 2010
Scribe Notes

Week 1 Friday: September 10, 2010
Andrew Sellergren

a long long, which can hold up to 264. In fields like cryptography, even
larger numbers are necessary for the sake of security which is why you’ll
see 1024-bit and 4096-bit hashes being mentioned.

• As a quick shortcut at the command line, you can use the up and down
arrows to scroll through recent commands. You can also type ! followed
by the first letter of a command you recently ran to have it run again.

• Later in the semester when we begin working with databases, you’ll see
the need to count to very high numbers and 64- and higher-bit data types
will come in handy!

3.7 f2c.c

• Now we’ll challenge you to implement a program that converts a user’s
temperature input from Fahrenheit to Celsius. Use the GetFloat() func-
tion and the equation ◦C = (5/9) × (◦F − 32). Hopefully, after a few
minutes, your program looks something like the following:

/**
* f2c.c
*
* Computer Science 50
* David J. Malan
*
* Converts Fahrenheit to Celsius.
*
* Demonstrates arithmetic.
***/

#include <cs50.h>
#include <stdio.h>

int
main(void)
{

// ask user user for temperature in Fahrenheit
printf("Temperature in F: ");
float f = GetFloat();

// convert F to C
float c = 5 / 9.0 * (f - 32);

// display result
printf("%.1f F = %.1f C\n", f, c);

}

7

Computer Science 50
Fall 2010
Scribe Notes

Week 1 Friday: September 10, 2010
Andrew Sellergren

• Although for the past few lectures, we’ve been content to write main(),
the correct way to specify that main takes no arguments is to pass it the
keyword void.

• Notice that we write 9.0 because if we do integer division with 5 and 9,
we’ll always get 0 (the decimal part is rounded down). We write %.1f to
limit the values to one decimal place each.

• Question: isn’t f already a float? Yes, that’s true, but because of opera-
tor precedence and the placement of parentheses, the integer division will
be evaluated first and the result will still be a miscalculation if either 5 or
9 isn’t cast to a float beforehand. We could also move the (f − 32) to
the left side of the division to fix this.

• If we compile and run this program, we see that an input of 32 degrees
Fahrenheit returns 100 degrees Celsius, which we know to be correct.

4 Programming Constructs of C (42:00–68:00)

4.1 Conditions

• Conditions take the following form in C:

if (condition)
{

// do this
}

Between the parentheses, we place a boolean expression which, if true,
will cause the code in the curly braces to be executed.

• Conditions can get more complicated if you decide to take two or more
different actions based on different boolean expressions like so:

if (condition)
{

// do this
}
else if (condition)
{

// do that
}
else
{

// do this other thing
}

8

Computer Science 50
Fall 2010
Scribe Notes

Week 1 Friday: September 10, 2010
Andrew Sellergren

• Question: do you need a space between if and the parentheses? Techni-
cally, no, but it’s considered good style to include it. Style is the third
and least important of three metrics (correctness, design, and style) by
which we’ll evaluate your problem sets. Style is the aesthetic appearance
and overall readability of your code. Style may vary from programmer to
programmer in the small details, but it will be considered “good” so long
as it is consistent, well-commented, properly indented, and a few other
things which are described in more detail in the CS50 Style Guide. One
example of varying styles that are evaluated the same is the following:

if (condition) {
// do this

}

if (condition) {
// do this

}

Both are considered correct as long as only one or the other is used
throughout a program.

4.1.1 conditions1.c

• Let’s actually write some programs using conditions, beginning with conditions1.c:

/**
* conditions1.c
*
* Computer Science 50
* David J. Malan
*
* Tells user if his or her input is positive or negative (somewhat
* innacurately).
*
* Demonstrates use of if-else construct.
***/

#include <cs50.h>
#include <stdio.h>

int
main(void)
{

// ask user for an integer
printf("Id like an integer please: ");
int n = GetInt();

9

Computer Science 50
Fall 2010
Scribe Notes

Week 1 Friday: September 10, 2010
Andrew Sellergren

// analyze users input (somewhat inaccurately)
if (n > 0)

printf("You picked a positive number!\n");
else

printf("You picked a negative number!\n");
}

• GetInt() will prompt the user for an integer and wait until he provides
one. If he provides an incorrect input (such as a string), it will reprompt
him.

• Clearly, this program simply tells the user whether he picked a positive or
negative number.

• Notice we can omit the curly braces around our conditional statements so
long as they don’t exceed one line each. Indenting isn’t enough! If you
added another printf line after the first one in the else block, it will
always execute, even if the number is negative.

• But there’s a bug here. Can you spot it? Looks like we’re not properly
handling the case where the user provides the number 0. After all, it’s
neither positive nor negative. We can fix this by using an else if block
as well, as we do in conditions2.c.

4.1.2 conditions2.c

• Let’s fix that bug:

/**
* conditions2.c
*
* Computer Science 50
* David J. Malan
*
* Tells user if his or her input is positive or negative.
*
* Demonstrates use of if-else if-else construct.
***/

#include <cs50.h>
#include <stdio.h>

int
main(void)
{

// ask user for an integer

10

Computer Science 50
Fall 2010
Scribe Notes

Week 1 Friday: September 10, 2010
Andrew Sellergren

printf("Id like an integer please: ");
int n = GetInt();

// analyze users input (somewhat inaccurately)
if (n > 0)

printf("You picked a positive number!\n");
else if (n == 0)

printf("You picked zero!\n");
else

printf("You picked a negative number!\n");
}

• Know that when a program is currently running (such as when conditions2
is waiting for you to provide an integer), you can kill it by hitting Ctrl +
C on your keyboard.

4.2 Boolean Expressions

• If you want to check whether one of two conditions is true (or actually if
both are true), you can use the “or” operator (||) like so:

if (condition || condition)
{

// do this
}

In the real world, an example might be at a movie theater for a rated-R
movie. If someone is 17 and over or he is with a parent, then let him into
the movie.

• If you want to check that both conditions are true, use the “and” operator:

if (condition && condition)
{

// do this
}

4.2.1 nonswitch.c

• nonswitch.c demonstrates the use of the “and” operator:

11

Computer Science 50
Fall 2010
Scribe Notes

Week 1 Friday: September 10, 2010
Andrew Sellergren

/**
* nonswitch.c
*
* Computer Science 50
* David J. Malan
*
* Assesses the size of user’s input.
*
* Demonstrates use of Boolean ANDing.
***/

#include <cs50.h>
#include <stdio.h>

int
main(void)
{

// ask user for an integer
printf("Give me an integer between 1 and 10: ");
int n = GetInt();

// judge user’s input
if (n >= 1 && n <= 3)

printf("You picked a small number.\n");
else if (n >= 4 && n <= 6)

printf("You picked a medium number.\n");
else if (n >= 7 && n <= 10)

printf("You picked a big number.\n");
else

printf("You picked an invalid number.\n");
}

Pretty straightforward. Certainly it works as it’s supposed to, but is
there a better way to do this from a style or readability standpoint?
You betcha!3 We do so using a construct called a switch, as we see in
switch1.c.

4.3 The switch Statement

4.3.1 switch1.c

• /**
* switch1.c
*

3And yes, there’s always a better design. Your program will never quite be perfect. Le
sigh.

12

Computer Science 50
Fall 2010
Scribe Notes

Week 1 Friday: September 10, 2010
Andrew Sellergren

* Computer Science 50
* David J. Malan
*
* Assesses the size of user’s input.
*
* Demonstrates use of a switch.
***/

#include <cs50.h>
#include <stdio.h>

int
main(void)
{

// ask user for an integer
printf("Give me an integer between 1 and 10: ");
int n = GetInt();

// judge user’s input
switch (n)
{

case 1:
case 2:
case 3:

printf("You picked a small number.\n");
break;

case 4:
case 5:
case 6:

printf("You picked a medium number.\n");
break;

case 7:
case 8:
case 9:
case 10:

printf("You picked a big number.\n");
break;

default:
printf("You picked an invalid number.\n");

}
}

Functionally, this program is identical to nonswitch.c. Arguably, though,

13

Computer Science 50
Fall 2010
Scribe Notes

Week 1 Friday: September 10, 2010
Andrew Sellergren

it’s more readable, albeit longer.

• In the above program, each of the case statements is compared with the
variable provided to switch at the beginning of the block. If the case
matches the variable, then its lines of code are executed. Notice that the
cases lump together unless we explicitly type break. Thus 1, 2, and 3 fall
together, 4, 5, and 6 fall together, and 7, 8, 9, and 10. This is a common
source of bugs in programs! Don’t forget the break statements!

4.4 Loops

4.4.1 progress1.c

• for loops take the following general structure:

for (initializations; condition; updates)
{

// do this again and again
}

Within the parentheses after the for keyword, there are three parts. Be-
fore the first semicolon, we are initializing a variable which will be our
iterator or counter. Between the two semicolons, we’re providing a thresh-
old which, once reached, will cause the loop to be terminated. Finally, we
provide code to update our iterator.

• progress1.c introduces us to a for loop:

/**
* progress1.c
*
* Computer Science 50
* David J. Malan
*
* Simulates a progress bar.
*
* Demonstrates sleep.
***/

#include <stdio.h>
#include <unistd.h>

int
main(void)
{

// simulate progress from 0% to 100%
for (int i = 0; i <= 100; i++)

14

Computer Science 50
Fall 2010
Scribe Notes

Week 1 Friday: September 10, 2010
Andrew Sellergren

{
printf("Percent complete: %d%%\n", i);
sleep(1);

}
printf("\n");

}

This code is a very simple implementation of a progress bar, counting from
1 to 100 over the course of 100 seconds or so.

• In this case, it’s perfectly reasonable to use a variable name like i that
conveys very little information since the variable is only being used as a
counter.

• The %% is the escape syntax to print a literal percent character.

• Question: can you get the % character to say in one place? Yes, by speci-
fying a number before the d in the printf formatting character:

printf("Percent complete: %3d%%\n", i);

This will ensure that 3 spaces are used to print every number, no matter
how many digits it contains.

• Question: what is sleep()? sleep() is a function which simply pauses
execution of the program for a given number of seconds. It is defined
in a the unistd.h library. How would we have known this? There’s a
Linux command called man that provides a manual page for any function
you want to look up. Specifically, you would want to run a command like
man 3 sleep, which will jump to the third section of the manual where
function definitions live. If you’re feeling lost, don’t worry, Problem Set 1
will walk you through this in more detail.

4.4.2 progress2.c

• Let’s make our output a little more visually appealing:

/**
* progress2.c
*
* Computer Science 50
* David J. Malan
*
* Simulates a better progress bar.
*
* Demonstrates \r, fflush, and sleep.
***/

15

Computer Science 50
Fall 2010
Scribe Notes

Week 1 Friday: September 10, 2010
Andrew Sellergren

#include <stdio.h>
#include <unistd.h>

int
main(void)
{

// simulate progress from 0% to 100%
for (int i = 0; i <= 100; i++)
{

printf("\rPercent complete: %d%%", i);
fflush(stdout);
sleep(1);

}
printf("\n");

}

• Ignore the fflush(stdout) line for now.

• If we compile and run this, we see that progress indicator remains on a
single line. We achieve this by using \r instead of \n. This causes the next
line to overwrite the previous one which gives the appearance of animation
since the lines are the same length.

4.4.3 progress3.c

• In addition to for loops, there are while loops in C:

while (condition)
{

// do this again and again
}

Ultimately, you can implement the exact same programs with while loops
that you can with for loops. In some cases, one is more advantageous or
cleaner than the other.

• If there’s a variable that the while condition depends on, it’s up to you to
update it within the code block of the loop. progress3.c demonstrates
this:

16

Computer Science 50
Fall 2010
Scribe Notes

Week 1 Friday: September 10, 2010
Andrew Sellergren

/**
* progress3.c
*
* Computer Science 50
* David J. Malan
*
* Simulates a better progress bar.
*
* Demonstrates a while loop.
***/

#include <stdio.h>
#include <unistd.h>

int
main(void)
{

int i = 0;

/* simulate progress from 0% to 100% */
while (i <= 100)
{

printf("\rPercent complete: %d%%", i);
fflush(stdout);
sleep(1);
i++;

}
printf("\n");

}

4.4.4 positive1.c

• One last type of loop is the do-while, demonstrated below:

do
{

// do this again and again
}
while (condition);

• do-while has a particular use. The while block comes after the do block,
and, as you might expect, executes after it as well. This is useful when
we want to guarantee that some block of code be executed at least once
no matter what. We can see this put to use in taking user input in
positive1.c:

17

Computer Science 50
Fall 2010
Scribe Notes

Week 1 Friday: September 10, 2010
Andrew Sellergren

/**
* positive1.c
*
* Computer Science 50
* David J. Malan
*
* Demands that user provide a positive number.
*
* Demonstrates use of do-while.
***/

#include <cs50.h>
#include <stdio.h>

int
main(void)
{

// loop until user provides a positive integer
int n;
do
{

printf("I demand that you give me a positive integer: ");
n = GetInt();

}
while (n < 1);
printf("Thanks for the %d!\n", n);

}

Obviously, we want to want to ask the user for his input at least once no
matter what. Now we’ll either continue to execute the loop (which will
ask the user for input again) if the user didn’t provide the input we were
looking for (in this case a positive integer).

4.4.5 positive2.c

• positive2.c implements the exact same program but with the use of a
boolean variable:

/**
* positive2.c
*
* Computer Science 50
* David J. Malan
*
* Demands that user provide a positive number.
*

18

Computer Science 50
Fall 2010
Scribe Notes

Week 1 Friday: September 10, 2010
Andrew Sellergren

* Demonstrates use of bool.
***/

#include <cs50.h>
#include <stdio.h>

int
main(void)
{

// loop until user provides a positive integer
bool thankful = false;
do
{

printf("I demand that you give me a positive integer: ");
if (GetInt() > 0)

thankful = true;
}
while (thankful == false);
printf("Thanks for the positive integer!\n");

}

Notice that the return value of GetInt() is not actually stored in a vari-
able, but instead directly compared to 0. If that return value turns out to
be greater than 0, we set the boolean variable thankful to true.

4.4.6 positive3.c

• positive3.c is a final example that demonstrates the use of the ! or bang
operator. This inverts the value of whatever expression comes after it. So
if we write while (!thankful), it reads as “while not thankful,” which
actually makes for pretty readable code.

19

	Announcements (0:00–5:00)
	From Last Time (5:00–9:00)
	Some Simple Math (9:00–42:00)
	math1.c
	math2.c
	math3.c
	math4.c
	math5.c
	sizeof.c
	f2c.c

	Programming Constructs of C (42:00–68:00)
	Conditions
	conditions1.c
	conditions2.c

	Boolean Expressions
	nonswitch.c

	The switch Statement
	switch1.c

	Loops
	progress1.c
	progress2.c
	progress3.c
	positive1.c
	positive2.c
	positive3.c

