
What’s 51 about?

Programming isn’t hard.

Programming well is very hard.

We want you to write code that is:
  Reliable, efficient, readable, testable, provable,

maintainable… elegant!

Expand your problem-solving skills:
  Recognize problems & map them onto the right

languages, abstractions, & algorithms.

Course Focus
“Software Engineering in the Small”

  Introduce new programming abstractions
  e.g., closures, abstract & algebraic data types, polymorphism,

modules, classes & inheritance, synchronization, patterns, etc.
  increase your computational tool-box, stretch your thinking.

  Introduce engineering design
  e.g., coding style, interface design, efficiency concerns, testing.
  models & analytic tools (e.g., big-O, evaluation models.)
  learn to analyze, think, and express with precision.

2 CS51 Spring 2010

Who should take this course?
  CS concentrators & minors should:

  knowledge & experience is crucial for upper-level, software-
intensive courses (compilers, OS, networking, AI, graphics, etc.)

  51 : build up abstractions ; 61: drive through abstractions
  Also electrical engineering, statistics, [applied] math,

systems & synthetic biology, finance, economics, etc.
  these fields (and many others) demand computational thinking.

  Entrepreneurs
  engineering take on design is invaluable.

  Necessary background:
  basic programming, algorithms, data structures (CS50)
  mathematical “sophistication” (calc, ideally algebra)

3 CS51 Spring 2010

Course Tools
We’ll be using two very different programming environments.

  get used to learning languages (not that hard once you’ve absorbed
representatives from major genres.)

  Objective Caml (a.k.a. Ocaml & F#): First 2/3rds of the class
  functional & higher-order programming
  functional patterns
  substitution & environment models of evaluation
  types, polymorphism
  abstract data types, interfaces, modules

  Java: Final 1/3rd of the class
  imperative & object-oriented programming
  encapsulation, classes, subtyping, inheritance
  concurrency, synchronization, message passing
  OO design patterns

4 CS51 Spring 2010

Language & Code
  Language & abstractions matter.

  Try formulating an algorithm to multiply Roman numerals.

  Often, don’t have the luxury of choosing the language.
  We can still conceptualize & prototype using the right language

abstractions.
  If we understand relationships between linguistic abstractions,

we can realize the code in any language.

Example: Red-Black Trees
  A particular kind of balanced search tree [Guibas &

Sedgewick 1978].

7

4

1

11

5 15

12 17
3 0

C code (part 1/4)

void rb_insert(Tree T, node x) { !
 tree_insert(T, x); !
 x->colour = red; !
 while ((x != T->root) && (x->parent->colour == red)) { !
 if (x->parent == x->parent->parent->left) { !
! !y = x->parent->parent->right;!

 if (y->colour == red) { !
! !x->parent->colour = black;!

 y->colour = black;!
 x->parent->parent->colour = red;!
! x = x->parent->parent; !

 } else {!
! if (x == x->parent->right) {!

 x = x->parent; !
! left_rotate(T, x); !

 } !
 x->parent->colour = black;!
 x->parent->parent->colour = red;!
 right_rotate(T, x->parent->parent); !
 } !
 } else {!
! . . . /* repeat above with red/black swapped */!

C code (part 2/4)
void left_rotate(Tree T, node x) { !
 node y; !
 y = x->right; !
 x->right = y->left;!
 if (y->left != NULL) !
 y->left->parent = x; !

 y->parent = x->parent; !
 if (x->parent == NULL) !
 T->root = y; !
 else if (x == (x->parent)->left) !
 x->parent->left = y; !
 else !

 x->parent->right = y; !
 y->left = x; !
 x->parent = y; !
}!

/* repeat above for right_rotate with “obvious” changes */!

ML Code for Insert

fun balance((Blk,T(Red,T(Red,a,x,b),y,c),z,d)

 |(Blk,T(Red,a,x,T(Red,b,y,c)),z,d)

 |(Blk,a,x,T(Red,T(Red,b,y,c),z,d))

 |(Blk,a,x,T(Red,b,y,T(Red,c,z,d)))) =

 T(Red,T(Blk,a,x,b),y,T(Blk,c,z,d))
 | balance x = T x

fun ins x Empty = T(R,Empty,x,Empty)

 | ins x (T(color,a,y,b)) =

 if x <= y then balance(color,ins x a,y,b)

 else if x > y then balance(color,a,y,ins x b)

XKCD

10 CS51 Spring 2010

