
What’s 51 about? 

Programming isn’t hard. 

Programming well is very hard. 

We want you to write code that is:   
  Reliable, efficient, readable, testable, provable, 

maintainable… elegant! 

Expand your problem-solving skills: 
  Recognize problems & map them onto the right 

languages, abstractions, & algorithms. 



Course Focus 
“Software Engineering in the Small” 

  Introduce new programming abstractions 
  e.g., closures, abstract & algebraic data types, polymorphism, 

modules, classes & inheritance, synchronization, patterns, etc.   
  increase your computational tool-box, stretch your thinking. 

  Introduce engineering design 
  e.g., coding style, interface design, efficiency concerns, testing. 
  models & analytic tools (e.g., big-O, evaluation models.) 
  learn to analyze, think, and express with precision. 
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Who should take this course? 
  CS concentrators & minors should: 

  knowledge & experience is crucial for upper-level, software-
intensive courses (compilers, OS, networking,  AI, graphics, etc.) 

  51 : build up abstractions ; 61: drive through abstractions 
  Also electrical engineering, statistics, [applied] math, 

systems & synthetic biology, finance, economics, etc. 
  these fields (and many others) demand computational thinking. 

  Entrepreneurs 
  engineering take on design is invaluable. 

  Necessary background: 
  basic programming, algorithms, data structures (CS50) 
  mathematical “sophistication” (calc, ideally algebra) 
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Course Tools 
We’ll be using two very different programming environments. 

  get used to learning languages (not that hard once you’ve absorbed 
representatives from major genres.)   

  Objective Caml (a.k.a. Ocaml & F#):  First 2/3rds of the class 
  functional & higher-order programming 
  functional patterns 
  substitution & environment models of evaluation 
  types, polymorphism 
  abstract data types, interfaces, modules 

  Java: Final 1/3rd of the class 
  imperative & object-oriented programming 
  encapsulation, classes, subtyping, inheritance 
  concurrency, synchronization, message passing 
  OO design patterns 
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Language & Code 
  Language & abstractions matter. 

  Try formulating an algorithm to multiply Roman numerals. 

  Often, don’t have the luxury of choosing the language. 
  We can still conceptualize & prototype using the right language 

abstractions. 
  If we understand relationships between linguistic abstractions, 

we can realize the code in any language. 



Example: Red-Black Trees 
  A particular kind of balanced search tree [Guibas & 

Sedgewick 1978]. 
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C code (part 1/4)  

void rb_insert( Tree T, node x ) {    !
  tree_insert( T, x ); !
  x->colour = red;    !
  while ( (x != T->root) && (x->parent->colour == red) ) { !
      if ( x->parent == x->parent->parent->left ) {  !
! !y = x->parent->parent->right;!

        if ( y->colour == red ) {  !
! !x->parent->colour = black;!

          y->colour = black;!
          x->parent->parent->colour = red;!
!      x = x->parent->parent;               !

      } else {!
!    if ( x == x->parent->right ) {!

          x = x->parent;                   !
!       left_rotate( T, x );                   !

       } !
       x->parent->colour = black;!
       x->parent->parent->colour = red;!
       right_rotate( T, x->parent->parent );               !
     }           !
    } else {!
!   . . . /* repeat above with red/black swapped */!



C code (part 2/4) 
void left_rotate( Tree T, node x ) {    !
  node y;    !
  y = x->right;    !
  x->right = y->left;!
  if ( y->left != NULL )        !
    y->left->parent = x; !

  y->parent = x->parent; !
  if ( x->parent == NULL ) !
    T->root = y;    !
  else if ( x == (x->parent)->left ) !
    x->parent->left = y;        !
  else            !

   x->parent->right = y; !
   y->left = x;    !
   x->parent = y;    !
}!

/* repeat above for right_rotate with “obvious” changes */!



ML Code for Insert 

fun balance((Blk,T(Red,T(Red,a,x,b),y,c),z,d) 

           |(Blk,T(Red,a,x,T(Red,b,y,c)),z,d) 

           |(Blk,a,x,T(Red,T(Red,b,y,c),z,d)) 

           |(Blk,a,x,T(Red,b,y,T(Red,c,z,d)))) = 

                 T(Red,T(Blk,a,x,b),y,T(Blk,c,z,d)) 
 | balance x = T x 

fun ins x Empty = T(R,Empty,x,Empty) 

  | ins x (T(color,a,y,b)) =  

 if x <= y then balance(color,ins x a,y,b) 

  else if x > y then balance(color,a,y,ins x b) 



XKCD 
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