
CS 61:
Systems programming and
machine organization

Prof. Stephen Chong
November 15, 2010

Stephen Chong, Harvard University

CS 61

• Fall 2011, Tuesdays and Thursdays 2:30pm–4pm

• Prereqs: CS 50 (or C programming experience)

• An introduction to computer systems
• Not an “advanced” course.

• Don’t need to be a CS concentrator to take this class.

• Will set you up for CS161 (OS), CS153 (compilers), and CS141 (architecture)

• CS concentrators:
• Need 2 out of 3 of CS 50, CS 51, and CS 61

• CS as a secondary field
• Counts as one of the 4 half-courses

2

Stephen Chong, Harvard University

What is CS61 about?

3

Stephen Chong, Harvard University

What is CS61 about?

• What happens when I run a program?
• Delving into mysteries of how machines really work

• Get “under the hood” of programming at machine level

• Understand what affects performance of your programs

3

Stephen Chong, Harvard University

What is CS61 about?

• What happens when I run a program?
• Delving into mysteries of how machines really work

• Get “under the hood” of programming at machine level

• Understand what affects performance of your programs

• Need to understand how machines work in order to grasp
• Operating Systems

• Databases

• Processor Architecture

• Compilers

• Networks

3

Stephen Chong, Harvard University

What is CS61 about?

• What happens when I run a program?
• Delving into mysteries of how machines really work

• Get “under the hood” of programming at machine level

• Understand what affects performance of your programs

• Need to understand how machines work in order to grasp
• Operating Systems

• Databases

• Processor Architecture

• Compilers

• Networks

• … and to be a good programmer!
• i.e., to write efficient, robust, portable, maintainable code

3

Stephen Chong, Harvard University 4

What we’re going to cover

•Learn how computer systems work
•How processors work and what affects their performance
• Linking, loading, execution of programs

•Memory, caches, heap, stack

•Machine representation of programs and information
• Compilation

• x86 assembly code

•Learn about OS-level programming
•UNIX system programming: files, processes, pipes, signals

•Concurrency: threads and synchronization

Stephen Chong, Harvard University

Workload

• CS 61 is not intended to be a heavy workload course
• Challenging, but fun

• Suitable for anyone who has taken CS 50, not just CS concentrators

• One midterm, one final, 2 lectures + 1 section per week

• ~5 assignments
• Defusing a binary bomb

• Exploiting buffer overrun vulnerabilities

• Implementing your own shell

• Writing concurrent programs

• Implementing dynamic memory allocation
(can work in pairs on the programming assignments)

5

Stephen Chong, Harvard University

A taste...

•Why is it important to understand how
computers work?

•Ken Thompson, Reflections on Trusting Trust
•Co-inventor of UNIX
•Won Turing Award in 1983
•During award lecture, revealed

surprising exploit...

6

Stephen Chong, Harvard University

The Thompson Hack

7

Stephen Chong, Harvard University

The Thompson Hack

• Thompson put backdoor into login.c to allow easy access
• Early days of UNIX

• Allow Ken Thompson access to any UNIX system by e.g., entering username
“ken” and password “magic”

• Helpful for debugging

7

Stephen Chong, Harvard University

The Thompson Hack

• Thompson put backdoor into login.c to allow easy access
• Early days of UNIX

• Allow Ken Thompson access to any UNIX system by e.g., entering username
“ken” and password “magic”

• Helpful for debugging

• But anyone looking at code for login.c would see the backdoor
and be able to use it!

7

Stephen Chong, Harvard University

The Thompson Hack

• Thompson put backdoor into login.c to allow easy access
• Early days of UNIX

• Allow Ken Thompson access to any UNIX system by e.g., entering username
“ken” and password “magic”

• Helpful for debugging

• But anyone looking at code for login.c would see the backdoor
and be able to use it!

• So, Thompson hacked the C compiler
• C compiler notices when it is compiling login.c
• C compiler inserts backdoor code

7

Stephen Chong, Harvard University

The Thompson Hack

• Thompson put backdoor into login.c to allow easy access
• Early days of UNIX

• Allow Ken Thompson access to any UNIX system by e.g., entering username
“ken” and password “magic”

• Helpful for debugging

• But anyone looking at code for login.c would see the backdoor
and be able to use it!

• So, Thompson hacked the C compiler
• C compiler notices when it is compiling login.c
• C compiler inserts backdoor code

• Now login.c code looks normal, but code for the C compiler is
suspicious

7

Stephen Chong, Harvard University

The Thompson Hack

8

Stephen Chong, Harvard University

The Thompson Hack

• So Thompson hacked the C compiler again
• C compiler notices when it is compiling itself

• The C compiler was written in C

• C compiler inserts code that will notice when login.c is being compiled and
will insert back door

• Then delete the hacked compiler source code

8

Stephen Chong, Harvard University

The Thompson Hack

• So Thompson hacked the C compiler again
• C compiler notices when it is compiling itself

• The C compiler was written in C

• C compiler inserts code that will notice when login.c is being compiled and
will insert back door

• Then delete the hacked compiler source code

• Now compiler code and login.c code look normal
• The backdoor only noticeable when you look at the binary executable for the

compiler and the login program!

8

Stephen Chong, Harvard University

The Thompson Hack

• So Thompson hacked the C compiler again
• C compiler notices when it is compiling itself

• The C compiler was written in C

• C compiler inserts code that will notice when login.c is being compiled and
will insert back door

• Then delete the hacked compiler source code

• Now compiler code and login.c code look normal
• The backdoor only noticeable when you look at the binary executable for the

compiler and the login program!

• Moral: computers may not do what you expect.
• Take CS 61 and hone your expectations!

8

Stephen Chong, Harvard University

CS 51 or CS 61?

•Take both! They’re complementary...
•CS51 focuses on concepts of program design, data

structures, and algorithms
•Sets you up for later theory and programming classes

•CS61 is more “nuts and bolts” – how machines
work
•Sets you up for later systems, architecture, and compiler

classes

9

Stephen Chong, Harvard University

Questions?

•Email me (chong@seas.harvard.edu)

•Look at the CS 61 website:
 http://cs61.seas.harvard.edu/

•Hope to see you in the Fall!

10

