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CS 61

• Fall 2011, Tuesdays and Thursdays 2:30pm–4pm

• Prereqs: CS 50 (or C programming experience)

• An introduction to computer systems
• Not an “advanced” course.

• Don’t need to be a CS concentrator to take this class.

• Will set you up for CS161 (OS), CS153 (compilers), and CS141 (architecture)

• CS concentrators:
• Need 2 out of 3 of CS 50, CS 51, and CS 61

• CS as a secondary field
• Counts as one of the 4 half-courses
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What is CS61 about?
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What is CS61 about?

• What happens when I run a program?
• Delving into mysteries of how machines really work

• Get “under the hood” of programming at machine level

• Understand what affects performance of your programs
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• Need to understand how machines work in order to grasp
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What is CS61 about?

• What happens when I run a program?
• Delving into mysteries of how machines really work

• Get “under the hood” of programming at machine level

• Understand what affects performance of your programs

• Need to understand how machines work in order to grasp
• Operating Systems

• Databases

• Processor Architecture

• Compilers

• Networks

• … and to be a good programmer!
• i.e., to write efficient, robust, portable, maintainable code
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What we’re going to cover

•Learn how computer systems work
•How processors work and what affects their performance
• Linking, loading, execution of programs

•Memory, caches, heap, stack 

•Machine representation of programs and information
• Compilation

• x86 assembly code

•Learn about OS-level programming
•UNIX system programming: files, processes, pipes, signals

•Concurrency: threads and synchronization
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Workload

• CS 61 is not intended to be a heavy workload course
• Challenging, but fun

• Suitable for anyone who has taken CS 50, not just CS concentrators

• One midterm, one final, 2 lectures + 1 section per week

• ~5 assignments
• Defusing a binary bomb

• Exploiting buffer overrun vulnerabilities

• Implementing your own shell

• Writing concurrent programs

• Implementing dynamic memory allocation
(can work in pairs on the programming assignments)
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A taste...

•Why is it important to understand how 
computers work?

•Ken Thompson, Reflections on Trusting Trust
•Co-inventor of UNIX
•Won Turing Award in 1983
•During award lecture, revealed 

surprising exploit... 
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The Thompson Hack 
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The Thompson Hack 

• Thompson put backdoor into login.c to allow easy access
• Early days of UNIX

• Allow Ken Thompson access to any UNIX system by e.g., entering username 
“ken” and password “magic”

• Helpful for debugging
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The Thompson Hack 

• Thompson put backdoor into login.c to allow easy access
• Early days of UNIX

• Allow Ken Thompson access to any UNIX system by e.g., entering username 
“ken” and password “magic”

• Helpful for debugging

• But anyone looking at code for login.c would see the backdoor 
and be able to use it!

• So, Thompson hacked the C compiler
• C compiler notices when it is compiling login.c
• C compiler inserts backdoor code

• Now login.c code looks normal, but code for the C compiler is 
suspicious
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The Thompson Hack 

• So Thompson hacked the C compiler again
• C compiler notices when it is compiling itself

• The C compiler was written in C

• C compiler inserts code that will notice when login.c is being compiled and 
will insert back door

• Then delete the hacked compiler source code
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The Thompson Hack 

• So Thompson hacked the C compiler again
• C compiler notices when it is compiling itself

• The C compiler was written in C

• C compiler inserts code that will notice when login.c is being compiled and 
will insert back door

• Then delete the hacked compiler source code

• Now compiler code and login.c code look normal
• The backdoor only noticeable when you look at the binary executable for the 

compiler and the login program!

• Moral: computers may not do what you expect. 
• Take CS 61 and hone your expectations!
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CS 51 or CS 61?

•Take both! They’re complementary...
•CS51 focuses on concepts of program design, data 

structures, and algorithms
•Sets you up for later theory and programming classes

•CS61 is more “nuts and bolts” – how machines 
work
•Sets you up for later systems, architecture, and compiler 

classes
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Questions?

•Email me (chong@seas.harvard.edu)

•Look at the CS 61 website:
     http://cs61.seas.harvard.edu/

•Hope to see you in the Fall!
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