Computer Science 50 Week 3 Monday: September 20, 2010
Fall 2010 Andrew Sellergren
Scribe Notes

Contents

1 Announcements and Demos (0:00-5:00) 2

2 Cryptography (5:00-21:00) 2
2.1 Secret-key Cryptography 2
22 Problem Set 2. 3

3 Demographics (21:00-26:00) 4

4 More Beer (25:00—46:00) 4
41 beerl.c 4
4.2 beer2.c 6
4.3 beer3.c 7
44 beerd.c 9

5 Arrays (46:00—72:00) 11
5.1 arrayl.c 11
9.2 stringl.c. 12
5.3 Searchand Sort oo o 14

Computer Science 50 Week 3 Monday: September 20, 2010
Fall 2010 Andrew Sellergren
Scribe Notes

1 Announcements and Demos (0:00-5:00)

e This is CS50.
e 1 new handout.

e David recently got an e-mail requesting that he provide his FAS username

and password due to a server upgrade. He clicked on the link to do so
and, to his surprise, was taken to maxfilmsonline.com. Assuming David
actually fell for it and entered his username and password, what can his
adversary now do with his password? He can certainly login to David’s
e-mail account and send e-mails as him, but truth be told, he could have
impersonated David via e-mail even without his password (it’s surprisingly
easy). However, the adversary also know has access to a shell account, as
Harvard provides a server cluster much like the CS50 Cloud that you can
connect to remotely via SSH. This server cluster is called NICE for New
Instructional Computing Environment. That’s a little scarier since now
he could perhaps start sharing files illegally or launch attacks internally
on NICE. What’s even scarier is how easy it is to set up a phishing attack
like this. All he needed was to buy a domain name, copy and paste the
HTML that implements Harvard’s webmail interface (the HTML source
code is readily viewable in any browser), and send out a few e-mails. If
you're interested in security issues like this, take Computer Science 105!

2 Cryptography (5:00-21:00)

2.1

Secret-key Cryptography

As it’s name implies, secret-key cryptography relies on a key which is
known only to you and the recipient of the encrypted message and is used
both to encrypt and to decrypt the message.

One problem with secret-key cryptography is that if the key is compro-
mised, all messages, both past and future, are vulnerable to being inter-
cepted.

Another problem with secret-key cryptography is the challenge of sharing a
key between two parties. How could you, for example, agree on a secret key
with Amazon when you have no real contact with anyone in the company?
Thankfully, public-key cryptography provides a solution to this quandary.

For Problem Set 2, you’ll be implementing secret-key cryptography. We
exposed you to this last time with a reference to A Christmas Story in
which Ralphie’s secret decoder ring reveals the message “Be sure to drink
your Ovaltine.” Incidentally, the secret key was 13 which means that all
the letters in the message were rotated around the alphabet by 13 letters,
wrapping around when the end is reached. This cipher is a specific instance
(called ROT-13) of Caesar’s cipher.

Computer Science 50 Week 3 Monday: September 20, 2010
Fall 2010 Andrew Sellergren
Scribe Notes

2.2 Problem Set 2

e In Problem Set 2, you’ll be writing a program that takes the key as a
command-line argument, prompts the user for plaintext to encrypt, and
then prints the ciphertext. As you iterate from left to right through the
characters of the user-provided plaintext, you’ll need to have some condi-
tions in place that prevent punctuation from being rotated.

e As we've discussed, Caesar’s cipher isn’t the most secure. Because there
are only 26 possible keys, a brute-force attack which attempts to decrypt
a message using all possible keys won’t take very long to succeed. In the
remainder of Problem Set 2, you’ll be implementing Vigenere’s cipher,
which is slightly more secure. In Vigenere’s cipher, keys are actual words.
As you iterate from left to right through the characters of the plaintext,
you also iterate through the characters of the key, using a different one to
rotate each character of the plaintext. In this way, there are 26™ possible
keys, where n is the length of the key.

e In the Hacker Edition of Problem Set 2, you are tasked with decrypting a
few ciphertext strings. On many systems, including Mac OS and Linux,
passwords are stored in files as encrypted text. The hint we give you is
that these passwords you’re trying to crack aren’t very secure, so making
certain assumptions about them will reduce the runtime of your cracking
algorithm. For example, instead of “hello,” perhaps the user chose “hell0”
or “hell0” as his password. These are slightly more secure in that a dic-
tionary attack in which an adversary tries all English words in a dictionary
won’t succeed outright.

e As inspiration for Problem Set 2, check out the scene from Spaceballs in
which King Roland reveals his password to be, umm, not so secure.

e If you couldn’t attend the walkthrough in person, the video is available on
the Problem Sets page. Sections, as well, are a valuable resource to you.

e Per the syllabus, we use three axes to grade your problem sets. Your work
will be rated poor, fair, good, better, or best for Correctness, Design,
and Style. Generally speaking, correctness refers to whether or not your
program actually works and adheres to the specification. Design refers to
the choices you made while implementing your program: did you solve
the problem in one of several intelligent, efficient possible ways? Finally,
style refers mostly to the readability of your code: is it pretty-printed with
meaningful variable names and plenty of comments? All in all, we aim to
give you much more qualitative feedback than quantitative since our hope
is that you will take our advice into consideration as you tackle the next
problem set. Know also that correctness is weighted more than design
which is weighted more than style. And by all means, don’t think that
a “good” is equivalent to a 3 out of 5, or 60%. We ultimately determine
your final grade based on how you have progressed over the semester.

http://www.cs50.net/psets/

Computer Science 50 Week 3 Monday: September 20, 2010
Fall 2010 Andrew Sellergren
Scribe Notes

3 Demographics (21:00-26:00)

As we mentioned a few lectures ago, most of you are sophomores, but the
rest of you are evenly distributed among the freshman, junior, and senior
classes.

For the first time, the “less comfortable” students make up the majority
of the class (46%) while the remainder is split amongst “somewhere in
between” (42%) and “more comfortable” (12%).

77% of you have never taken a course in computer science before this class.

Almost 200 of you have so-called normal phones (i.e. non-smartphones).
By the way, we ask you because it’s useful to know what the user base
is for Android, BlackBerry, and iPhone apps come semester’s end when
some of you decide to develop them for your final projects.

You're split about 50-50 between Mac and Windows users. Check out our
Software page to take advantage of our MSDN Academic Alliance license
and download the latest version of Windows.

The most common reason for taking CS50 is as an elective!

4 More Beer (25:00-46:00)

4.1

beerl.c

Let’s reimplement beerl.c starting from scratch. To begin we need to
include the pre-processor directive and the skeleton definition of main:

#include <stdio.h>

int
main (void)

{

Next, we need to print a message to the user, get his input, and store it
as the number of bottles of beer to count down from:

#include <stdio.h>
#include <csb0.h>

int
main (void)
{
printf ("How many bottles of beer? ");

http://www.cs50.net/software/

Computer Science 50 Week 3 Monday: September 20, 2010
Fall 2010 Andrew Sellergren
Scribe Notes

int n = GetInt();
}

We need to include the CS50 library’s header file because we're using
GetInt ().

e Even if we don’t explicitly instruct you to in, say, a problem set specifica-
tion, checking user input is always a priority:

#include <stdio.h>
#include <cs50.h>

int

main (void)

{
printf ("How many bottles of beer? ");
int n = GetInt();

if (n < 1)

{
printf ("Sorry, that makes no sense.\n");
return 1;

}

We return 1 if the user gives us bad input because anything non-zero
represents an error code.

e Now we move on to the business of actually singing the song with a for
loop:

#include <stdio.h>
#include <cs50.h>

int

main (void)

{
printf ("How many bottles of beer? ");
int n = GetInt();

if (n < 1)

{
printf ("Sorry, that makes no sense.\n");
return 1;

}

for (int i = 99; i >= 1; i--)

Computer Science 50 Week 3 Monday: September 20, 2010

Fall 2010
Scribe Notes

3

Andrew Sellergren

Our for loop terminates at i >= 1 because if we go all the way to 0, then
—1 will be printed in the last line of the song. Finally, let’s add the actual
lines of the song:

#include <stdio.h>
#include <csb50.h>

int
main (void)
{
printf ("How many bottles of beer? ");
int n = GetInt();
if (n < 1)
{
printf ("Sorry, that makes no sense.\n");
return 1;
}
for (int 1 = 99; i >= 1; i--)
{
printf ("%d bottle(s) of beer on the wall,\n", i);
printf ("%d bottle(s) of beer,\n", i);
printf ("Take one down, pass it around,\n");
printf("%d bottle(s) of beer on the wall.\n\n", i - 1);
}
}

The only place where we really have to stop and think is in the last line
of each verse in which we want to print i - 1 rather than i.

e One major bug with our program as written above. No matter what input
the user provides, we're iterating from 99 down to 1. We can easily fix
this by initializing i to the value of n rather than hardcoding 99.

4.2 beer2.c

e We can very easily convert our for loop to a while loop like so:

#include <stdio.h>
#include <csb50.h>

Computer Science 50 Week 3 Monday: September 20, 2010
Fall 2010 Andrew Sellergren
Scribe Notes

int

main (void)

{
printf ("How many bottles of beer? ");
int n = GetInt();

if (n < 1)

{
printf ("Sorry, that makes no sense.\n");
return 1;

}

while (n > 0)

{
printf ("%d bottle(s) of beer on the wall,\n", n);
printf ("%d bottle(s) of beer,\n", n);
printf ("Take one down, pass it around,\n");
printf ("%d bottle(s) of beer on the wall.\n\n", n - 1);
n--;

}

3

Notice we need to explicitly decrement n within the loop.

e What is one upsides to the this approach? With a while loop, we have
no need for the variable i, so we use less memory.

e However, one downside of this approach is that our use of n is now de-
structive. That is, at the end of the loop, n doesn’t have the same value
as at the beginning. So we’ve lost the ability to do anything else with that
value.

e In the end, which is the better approach? To be honest, they’re both
equally good choices. Underneath the hood, they’re probably implemented
exactly the same. The for loop affords you more fine-tuned control al-
though it’s syntax is a little uglier.

4.3 beer3.c

e If we want to get a little fancier, we’ll actually properly handle (in a
grammatical sense) the case in which “beers” becomes “beer.” We do so
in beer3.c:

/**

* beer3.c
E3

* Computer Science 50

Computer Science 50 Week 3 Monday: September 20, 2010
Fall 2010 Andrew Sellergren
Scribe Notes

* David J. Malan

*

* Sings "99 Bottles of Beer on the Wall."
*

*

Demonstrates a condition within a for loop.
stk ok sk sk ok sk ok ok sk sk sk sk sk sk sk sk sk s ok sk ok sk sk sk sk sk sk ke sksk sk sk e ok sk s ok sk sk sk sk sk sk sk sk sk sk sk ok sk sk ok sk sk ok sk sk sk ok /

#include <csb50.h>
#include <stdio.h>

int

main(void)

{
// ask user for number
printf ("How many bottles will there be? ");
int n = GetInt();

// exit upon invalid input

if (n < 1)

{
printf ("Sorry, that makes no sense.\n");
return 1;

}

// sing the annoying song

printf ("\n");

for (int 1 = n; i > 0; i--)

{
// use proper grammar
string s1 = (1 == 1) 7 "bottle" : "bottles";
string s2 = (i == 2) 7 "bottle" : "bottles";

// sing verses

printf("%d %s of beer on the wall,\n", i, sl1);

printf("%d %s of beer,\n", i, sl);

printf ("Take one down, pass it around,\n");

printf("%d %s of beer on the wall.\n\n", i - 1, s2);
}

// exit when song is over
printf("Wow, that’s annoying.\n");
return O;

Computer Science 50 Week 3 Monday: September 20, 2010
Fall 2010 Andrew Sellergren
Scribe Notes

What’s with the 7 : syntax? It’s actually a ternary operator. The first
part (i == 1) is a condition which, if true, causes the string after the ?,
“bottle,” to be assigned to s1. If the condition is false, then “bottles” is
assigned instead. Try running beer3 with 3 as the input and you’ll see
that we’ve corrected the grammar glitch. It’s called a ternary operator
because it takes three operands, as opposed to a binary operator, which
takes two, or a unary operator, which takes just one.

4.4 beerd.c

e One last optimization we can make is to abstract away the logic for printing
verses into a separate function:

/**

* beerd.c

*

* Computer Science 50

* David J. Malan

*

* Sings "99 Bottles of Beer on the Wall."
*

*x

Demonstrates hierarchical decomposition and parameter passing.
stk sk sk sk sk sk sk sk sk sk ok o o ok ke ok ok ok sk sk sk sk sk sk sk sk sk sk sk sk ok ke ske sk ok sk sk sk sksksk sk sk sk sk ok o ok ke skok ok sk sk sk sk sk sksk sk sk sk sk sk ko kokok ok ok ok kok /

#include <csb0.h>
#include <stdio.h>

// function prototype
void chorus(int b);

int

main(void)

{
// ask user for number
printf ("How many bottles will there be? ");
int n = GetInt();

// exit upon invalid input

if (n < 1)

{
printf ("Sorry, that makes no sense.\n");
return 1;

Computer Science 50 Week 3 Monday: September 20, 2010
Fall 2010 Andrew Sellergren
Scribe Notes

// sing the annoying song
printf("\n");
while (n)

chorus(n--);

// exit when song is over
printf ("Wow, that’s annoying.\n");

return O;
}
/*
* Sings about specified number of bottles.
*/
void
chorus(int b)
{
// use proper grammar
string s1 = (b == 1) 7 "bottle" : "bottles";
string s2 = (b == 2) 7 "bottle" : "bottles";
// sing verses
printf("%d %s of beer on the wall,\n", b, sl);
printf("%d %s of beer,\n", b, sl);
printf ("Take one down, pass it around,\n");
printf("%d %s of beer on the wall.\n\n", b - 1, s2);
}

chorus is a function that takes a single argument. We're being a little
fancy here by passing it n-- instead of n. All this does is accomplish
the function call and the decrementation of n in a single line of code as
opposed to two.

e We can write while(n) because it’s equivalent to while(n > 0). As long
as n is non-zero, it evaluates to “true,” so the loop continues executing.

e chorus has a return type of void since all it does it print lines to the
screen. Otherwise, it’s just an exact copy of the lines of code within
the loop in beer3.c. Within chorus, b never changes value. b takes on
different values within chorus because we pass different values of n.

e The point of this code is not to be concise at the cost of clarity, but merely
to introduce you to some of the syntax you might see in textbooks and
the like.

10

Computer Science 50 Week 3 Monday: September 20, 2010
Fall 2010 Andrew Sellergren
Scribe Notes

5 Arrays (46:00—72:00)

5.1 arrayl.c

e Recall that arrays are chunks of contiguous memory that allow you to
store multiple variables of the same type in a single container. Take a
look at array1l.c that introduces us to arrays in C:

[kkok ok sk sk o ok ok sk ok ok ok sk sk sk ke ok sk sk sk s ok sk sk sk sk ok ok sk sk sk ke ok sksk sk ok sk sk s sk ok ok sk sk ok sksk sk e ok sk sk sk sk ok sk ok ok sk sk ok ok ok ok
* arrayl.c

Computer Science 50
David J. Malan

Computes a student’s average across 2 quizzes.

¥ ¥ X X ¥ %

Demonstrates use of an array, a constant, and rounding.
skt ok stk ok o ok stk ok sk ok sk ok sk ok sk sk ok stk sk sk ok sk sk sk ok sk sk ok stk ok sk ok stk sk sk sk ok ok skok ok ok sksk ok sk sk sk ok sk ok /

#include <csb0.h>
#include <stdio.h>

// number of quizzes per term
#define QUIZZES 2

int

main(void)

{
float grades[QUIZZES], sum;
int average, i;

// ask user for grades
printf ("\nWhat were your quiz scores?\n\n");
for (i = 0; i < QUIZZES; i++)
{
printf ("Quiz #%d of %d: ", i+1, QUIZZES);
grades[i] = GetFloat();
}

// compute average
sum = 0;
for (i = 0; i < QUIZZES; i++)
sum += grades[i];
average = (int) (sum / QUIZZES + 0.5);

11

Computer Science 50 Week 3 Monday: September 20, 2010
Fall 2010 Andrew Sellergren
Scribe Notes

5.2

// report average
printf ("\nYour average is: %d\n\n", average);

The purpose of this program is to prompt a user for his quiz grades in
a particular class and then compute the average. Of course, we’d like to
store these quiz grades in the same variable since if there are 10 of them,
we don’t want to have to declare 10 separate variables.

The syntax for declaring an array looks like this:
float grades[QUIZZES];

Here, we're asking for an array that can store 2 variables of type float.
At the top of the program, we assign QUIZZES as a constant that holds
the number 2 using the #define directive. By convention, constants are
written in all-capital letters in C. Defining a constant at the top of our
program allows us to easily change the value it stands for throughout the
program. Also, it allows the compiler to make certain optimizations.

Notice that we can consecutively declare multiple variables of the same
type by separating them with commas. In addition to an array of float’s,
we declare a single float named sum.

Within the loop, we assign the quiz grades to the elements of the grades
array. Arrays are 0-indexed, so the first grade goes into grades[0] and
the second grade goes into grades[1]. In each case, it is the return value
of GetFloat (), the user’s input, that is stored.

To calculate the sum of the quiz grades, we again loop through the grades
array and add the values together. Once we have the sum, we divide it by
the number of quizzes and then cast it to an int. Interestingly, instead
of using the round function, we can accomplish the same by adding 0.5
before we cast to an int. If the quiz total is, say, 99.6, then adding
0.5 will produce 100.1 and casting to an int will result in 100 (since it
gets truncated). 100 is the same result we would get from round(99.6).
Likewise if the quiz total is 99.4, adding 0.5 and casting results in 99, just
as rounding would. Try it with other examples if you're still a non-believer!

stringl.c

When we began working with argv, we mentioned that it was an array of
strings. Well, since strings are really just arrays of characters, argv was
actually an array of arrays, or a two-dimensional array.

Since strings are just arrays of characters, we can access each character in
them just as we would the elements in an array:

12

Computer Science 50 Week 3 Monday: September 20, 2010
Fall 2010 Andrew Sellergren
Scribe Notes

/3K ok ok sk sk ok o sk sk ok o ok sk sk sk sk e ki sk sk s sk sk ok s ke ok sk ok sk e ok sk sk sk e ok sk sk sk s ok sk sk sk e ok sk sk sk e sk sk sk ok o sk sk ok ok ke sk sk sk ok koK ok
* stringl.c

Computer Science 50
David J. Malan

Prints a given string one character per line.

* X X X ¥ X x

Demonstrates strings as arrays of chars and use of strlen.
stk ok sk sk ok sk sk sk sk ok sk sk sk ok sksk sk ok sksk sk sk ok sksk sk sk ok sk sk ok skeskosk ok sksksk sk ok sk sksk ok ok skskok ok skskok sk sk sk sk sk ok /

#include <csb0.h>
#include <stdio.h>
#include <string.h>

int
main(void)
{
// get line of text
string s = GetString();
// print string, one character per line
if (s != NULL)
{
for (int 1 = 0; i < strlen(s); i++)
{
char ¢ = s[i];
printf ("%c\n", c);
}
}
¥

Here, we iterate over all of the characters in the user-provided string and
print them out one at a time, one per line, simply to demonstrate that a
string is essentially an array.

e The string data type is one that we made up to reduce confusion in these
first few weeks. s is actually an array of char’s. But even that’s a bit of a
white lie. Functions in C can’t return entire arrays. Rather, GetString()
returns a pointer to an array, i.e. the memory address in RAM of that
first chunk of the array. Basically, it tells us where we can find the string.

e If the user doesn’t actually give us a string when we prompt him for
one using GetString(), he can wreak havoc in our program if we aren’t
careful. Whenever we’re dealing with strings, we need to check that they
don’t have the special value of NULL before we proceed to manipulate them.

13

Computer Science 50 Week 3 Monday: September 20, 2010
Fall 2010 Andrew Sellergren
Scribe Notes

5.3

When we talk about the stack in computer science, we're referring to the
map of memory addresses for all of our computer’s RAM. The very lowest
of those memory addresses is reserved for the operating system, so if you
are ever handed the memory address 0, something is wrong. Trying to
manipulate a string that has value NULL is equivalent to trying to access
memory address 0, which is never good.

If we instead use i <= strlen(s) as the terminating condition for our
loop, we’ll end up iterating off the end of our array and touching memory
that doesn’t belong to us. Still, the program compiles and seems to work
okay, printing a blank after “o.” What if we iterate up to 100 or 10000007
At some point, we run out of memory and cause a segmentation fault.

Failing to check the bounds of an array is a serious security vulnerability.
A knowing adversary can use this to hijack a program and execute his
own malicious code.

Search and Sort
On the board are two arrays of integers covered by pieces of paper.

Let’s bring down a volunteer and ask him to find the value 50 in the
top array. Having no foreknowledge of the array, he looks behind pieces
of paper “randomly” and finds 50 on the seventh try. His self-described
process was to look under each piece of paper one at a time, moving left
to right across the board.

Of course, this process isn’t very efficient. In the worst case, for an array
of length n, the very last number will be the one we are searching for, so
we’ll have to walk through n steps to find it. With no foreknowledge of
the array, this is the best we can do: to brute force examine every single
element of the array.

Now let’s search the second array for the number 50, this time knowing
that the array is sorted but still not knowing what numbers it contains.
Recall our efforts to search the phonebook in the first lecture. If we jump
to the middle of the array, we find the number 124. Now we can disregard
the right half of the array since our number is less than 124 and the array
is sorted. With the remaining left half of the array, we again choose a
number in the middle and find 51. Only one number remains to the left
of 51 and since our number is less than 51, it must be our number.

Dealing with a sorted array and using binary search, we were able to
greatly reduce the number of steps it took to find the number 50. But
how do we sort an array? More on that next time.

14

	Announcements and Demos (0:00--5:00)
	Cryptography (5:00--21:00)
	Secret-key Cryptography
	Problem Set 2

	Demographics (21:00--26:00)
	More Beer (25:00--46:00)
	beer1.c
	beer2.c
	beer3.c
	beer4.c

	Arrays (46:00--72:00)
	array1.c
	string1.c
	Search and Sort

