Computer Science 50 Week 4 Wednesday: September 29, 2010
Fall 2010 Andrew Sellergren
Scribe Notes

Contents

1 Announcements and Demos (0:00—8:00) 2

2 From Last Time (8:00-15:00) 2

3 Pointers (15:00-73:00)

3.1
3.2
3.3
3.4
3.5

2
SWAP.C o v v v v e e e e e e e e e 3
comparel.c 6
copyl.co 8
COPY2.C . . v v i it e 11
Pointers to Other Data Types 13

Computer Science 50 Week 4 Wednesday: September 29, 2010
Fall 2010 Andrew Sellergren
Scribe Notes

1 Announcements and Demos (0:00—8:00)

e This is CS50.
e 0 new handouts.

e Today when David witnessed a woman struggling with the Charlie Card
machines in the Harvard T station today and offered to help, he was
reminded of the importance of good design in computer science. It will
be especially important if you decide to create a website for your final
project as you’ll need to consider all aspects of the user interface. The
user interface on the Charlie Card machines, unfortunately, is optimized
for all possible use cases rather than the most common use cases. You
are first asked if you have a Charlie Card or if you want to buy a ticket.
Once you press the button to buy a ticket, you have to choose what type
of ticket you want to buy. Then, because there’s no option for one-way or
round-trip, you have to manually enter the value of the ticket you want
to buy. Only after navigating through a half dozen more screens are you
finally able to print out a ticket.

e We’re not perfect by any means. After soliciting feedback on the Harvard-
Courses user interface, we’ll be implementing some changes that hopefully
make it easier to use.

2 From Last Time (8:00-15:00)

o A few lectures ago, we teased apart buggy3.c and determined that a
problem of variable scope was preventing our swap function from working
properly. We’ll dive more into this in a moment.

e We also mentioned the importance of not overstepping the bounds of an
array. Doing so can lead to segmentation faults or leave your program
vulnerable to a buffer overrun exploit. This exploit was, in fact, the basis
for the original iPhone jailbreak.

e Conceptually, we think of a computer’s memory as a stack. At the bottom
of the stack is the frame that stores main’s variables x and y. When we
call swap, another frame gets placed on top of main’s that stores swap’s
local variables a and b. Herein lies the problem. When we pass x and y as
arguments to swap, we’re not passing x and y themselves but rather copies
of x and y. swap modifies these copies rather than the original variables,
so the changes are lost when the function returns.

3 Pointers (15:00-73:00)

e Version 2 of the swap function fixes this problem:

Computer Science 50 Week 4 Wednesday: September 29, 2010
Fall 2010 Andrew Sellergren
Scribe Notes

void
swap(int *a, int *b)
{

int tmp = *a;

*a = *b;

*b = tmp;

}

It seems like all we needed to do was put an asterisk in front of a and b
wherever they appear. Of course, the solution is a little more complicated
than that, but at least syntactically, it’s quite simple.

e Using this notation, we're actually passing pointers to swap rather than
integers. Pointers are memory addresses. By passing pointers instead of
integers, we're giving swap the ability to modify main’s variables them-
selves rather than copies of those variables.

3.1 swap.c

e swap.c makes use of this new swap function:

/**

* swap.c
*

Computer Science 50
David J. Malan

*
*
*
* Swaps two variables’ values.
*
*

Demonstrates passing by reference.
stk ok sk sk ok ok ok sk sk sk ok sk sk sk sk ok sk sk sk sk ok ok sk sk sk ok sk sk sk ok sk sk ok sk sk ok sksksk sk ok sk sk sk ke ok skskok ok sk sksk ok ok sk sk sk sk ok /

#include <stdio.h>

// function prototype
void swap(int *a, int *b);

int
main(void)
{
int x = 1;
int y = 2;

printf("x is %d\n", x);
printf("y is %d\n", y);

Computer Science 50 Week 4 Wednesday: September 29, 2010
Fall 2010 Andrew Sellergren
Scribe Notes

printf ("Swapping...\n");
swap (&x, &y);

printf ("Swapped!\n");
printf("x is %d\n", x);
printf("y is %d\n", y);

}
/*
* Swap arguments’ values.
*/
void
swap(int *a, int *b)
{
int tmp = *a;
*a = *b;
*b = tmp;
X

We had to change the declaration of swap to indicate that it takes as
arguments two pointers to int’s rather than two int’s.

e Besides the asterisk notation, we also have a change to how we call swap.
We pass not x and y, but &x and &y. The & is the “address-of” operator.
&x and &y are the addresses in memory of x and y, respectively.

o Inside of the swap function, the * has a slightly different meaning. Writing
int *a declares a variable a of type int *. Writing *a retrieves the value
stored at memory address a. In the latter context, * is the dereferencing
operator.

e Let’s walk through the new swap line by line while looking at the stack:!

1. int tmp;

INote that in lecture, David uses the memory addresses 0x123 and 0x456, but we’re using
0x0 and 0x4 here. The starting points of both sets are arbitrary—only the difference between
them, namely 4 bytes, is significant.

Computer Science 50 Week 4 Wednesday: September 29, 2010

Fall 2010

Andrew Sellergren

Scribe Notes

3.

swap()
it * o it * b it trogs
0x0 | x4
rncing]
Ox(O
it ity
! 2

Here, again we’re declaring tmp as an int local to the function swap.
However, notice now that the variables a and b are not storing values
but rather memory addresses, specifically those of x and y! These
are pointers to x and y. When called upon, our function can access
and change x and y directly.

tmp = *a;

swap()

int*a int* ke it trng
00 | oxg | 1

maing)

Q=0 Qe

it ity
1 2

This whole line reads “assign to tmp whatever is stored in memory at
location a.” Once we've done that, tmp stores the value 1, as shown
in the diagram.

*a = *b;

swap()

int * o int * k> irit trop
00 | oxd | 1

rmain)

Q=0 O

int x int v
2 2

Computer Science 50 Week 4 Wednesday: September 29, 2010
Fall 2010 Andrew Sellergren
Scribe Notes

This line is a little harder to follow, but pay attention to the diagram.
We're saying “assign to the memory at location a whatever is stored
in memory at location b.” This is the first part of the swap! We've
actually modified the memory of main!

4. *b = tmp;

swap(]

it * o int * ke irit trogs
00 | oxd | 1

maing)

0x0 Oxd

it ity
2 1

And the swap is complete! Note that we don’t use a star in front
of tmp in this line. That’s because we don’t care about where tmp
is stored, we’re only using it to temporarily hold a value. We don’t
care what happens to it after swap returns.

5. [return;]

maing)
O 0x4
it ity
Z 1

Finally, swap returns (albeit not explicitly in the code since its type
is void) and its stack frame gets popped off. Unlike in buggy3.c,
however, the values of x and y have actually been swapped!

e Question: what would *&x return? This is equivalent to writing x since
the * and & operators undo each other. In this context, it would return 1,
then, before the swap has taken place.

3.2 comparel.c

e Our newly gained knowledge of pointers will allow us to figure out why
comparel.c doesn’t successfully compare two strings:

Computer Science 50 Week 4 Wednesday: September 29, 2010
Fall 2010 Andrew Sellergren
Scribe Notes

/K ok ok sk sk ok o ok sk sk ok o ok sk sk sk sk e ki sk sk o sk sk ok s ke ok sk ok sk e ok sk sk sk e ok sk sk sk s ok ok sk sk sk e sk sk ok e sk sk sk ok s sk sk ok ok ke sk sk sk ok koK ok
* comparel.c

Computer Science 50
David J. Malan

Tries (and fails) to compare two strings.

* X X X X X x

Demonstrates strings as pointers to arrays.
stk ok sk sk ok sk sk sk sk ok sk sk sk ke ok sksk sk ok sksk sk sk ok sksk sk sk ok sk sk ok stk sk ok sksksk sk ok ok skskok ok skskok ok skskok sk ok sk sk sk ok /

#include <csb0.h>
#include <stdio.h>

int

main(void)

{
// get line of text
printf("Say something: ");
string s1 = GetString();

// get another line of text
printf ("Say something: ");
string s2 = GetString();

// try (and fail) to compare strings
if (s1 == s2)
printf("You typed the same thing'\n");
else
printf("You typed different things!\n");
by

We're correctly using the comparison operator == instead of the assign-
ment operator =. Writing if (s1 = s2) would evaluate to true whenever
s2 was non-zero. This is definitely not what we want.

e comparel prints out “You typed different things!” even when we provide
it the same string twice. This is because s1 and s2 are actually pointers.
The string data type is actually a char #*. s1 and s2 store the addresses
in memory of the first char’s in our two string inputs. Once we know
the memory address of the first character, we can find the rest of the
characters in the string because they are contiguous in memory. We just
walk one byte at a time starting from that memory address until we find
the \O character, the null terminator, which marks the end of the string.

e When we write s1 == s2, we’re comparing the memory addresses of our

Computer Science 50 Week 4 Wednesday: September 29, 2010
Fall 2010 Andrew Sellergren
Scribe Notes

two string inputs, not the strings themselves. Because the memory ad-
dresses will never be the same (they must be stored at different locations),
this expression will always return false.

3.3 copyl.c

e copyl.c takes the training wheels off for the first time and explicitly uses
the char * data type to store a string:

[kkok ok sk sk ok ok ok sk ok ok sk sk sk ok ok sk sk sk sk sk sk sk sk ke ok sk sk sk ok ok sksk sk ok sk sk sk ok sk sk ok sksk sk ok sk sksk sk ok sk sk ok ke ok sk sk ok ok sk ok
* copyl.c

b3
* Computer Science 50

* David J. Malan

*

* Tries and fails to copy two strings.

*

* Demonstrates strings as pointers to arrays.

stk sk sk sk sk sk sk sk sk sk ok o o ok ke ok ok ok sk sk sk sk sksk sk sk sk sk sk sk ok ke ok ok sk sk sk sksksksk sk sk sk ok s ok sk skok ok sk sk sk sk sk sk sksk sk sk sk sk ko kokok ok ok kkok /

#include <csb50.h>

#include <ctype.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int
main(void)
{
// get line of text
printf("Say something: ");
char *sl1 = GetString();
if (s1 == NULL)
return 1;

// try (and fail) to copy string
char *s2 = si;

// change "copy"
printf ("Capitalizing copy...\n");
if (strlen(s2) > 0)

s2[0] = toupper(s2[0]);

// print original and "copy"
printf("Original: %s\n", si1);

Computer Science 50 Week 4 Wednesday: September 29, 2010
Fall 2010 Andrew Sellergren
Scribe Notes

printf ("Copy: %s\n", s2);

// free memory
free(sl);
}

We must check that s1 isn’t NULL because GetString will return NULL
if there isn’t enough memory to store the string the user gave as input.
NULL actually refers to the memory address 0x002 which is owned by the
operating system and which, if accessed by the program, will throw a fatal
erTor.

e The line char *s2 = s1 successfully assigns the memory address of the
user’s string to the s2 variable. However, it doesn’t actually make a copy of
that string. s2 points to the same string that s1 does, so if we dereference
s2 and modify what’s stored there, we’ll lose our original version of the
string.

e We do another sanity check using the strlen function to check that the
user hasn’t passed us an empty string. Once we’re sure the string isn’t
empty, we capitalize the first letter by passing it to the toupper function.
We access the first letter of the string using the bracket notation familiar
to us from arrays.

e When we compile and run copyl, we see that both the original string and
the copy are capitalized. When we converted the first letter to uppercase,
it was the original string, not a copy, that we modified.

e In case it wasn’t clear before, the syntax for declaring a pointer to a
char is demonstrated above. We write char *s2 to declare a pointer to
a char—what we previously referred to as the string data type—mnamed
s2.

e Recall that our representation of a computer’s memory included the stack,
which grows upward, as well as the heap, which grows downward:

2We'll discuss the Ox notation shortly.

Computer Science 50 Week 4 Wednesday: September 29, 2010
Fall 2010 Andrew Sellergren
Scribe Notes

cextc

initialized data

uninitialized data

heap

|
|
L

A
I
]

stack

environment variables

The text segment of memory stores the actual zeroes and ones that make
up the program. When we declare a global variable, as we do to store
the board for the Game of Fifteen, it is stored in the initialized data or
uninitialized data segments.

e The heap is used for dynamic memory allocation. You the programmer
won’t always know how much RAM your program will need before it runs.
When your program requests more memory at runtime, it will be allocated
from the heap. Whenever you’ve called GetString, GetInt, etc. from the
CS50 Library, you’ve been given memory from the heap.

e On most systems, pointers are actually 32-bit integers. That is, all of the
memory addresses can be represented with 4 bytes. Some systems are
64-bit, which means that memory addresses are represented with 8 bytes.

e When we call GetString in copyl and provide it with “foo” as input,
4 bytes of memory are allocated on the heap, 3 for the actual letters of
the string and 1 for the null terminator to mark the end of the string.

10

Computer Science 50 Week 4 Wednesday: September 29, 2010
Fall 2010 Andrew Sellergren
Scribe Notes

GetString then returns a pointer to the first character, the memory ad-
dress of “f” in the heap. Let’s call that memory address 71. The actual
value, then, of s1 is 71. However, since we don’t really care what the ac-
tual value of s1 is, it’s more meaningful to represent s1 as an arrow that
literally points to the first character of our string. Because s2 is assigned
the same value that s1 holds, it also points to the first character of our
string. We can visualize this like so:

sl 52

Once we've accessed the first letter of s2 and converted it to uppercase,
our memory looks like this:

sl 32

e Keep in mind that GetString allocates memory for our string on the heap
(using a function called malloc), not the stack. As a result, we don’t run
into problems with variable scope when GetString’s frame gets popped
off the stack.

3.4 copy2.c

e copy2.c successfully copies a string and capitalizes the copy:

/ ko ok sk sk ok o ok sk ok o ke ok sk ok sk ke sk sk sk e sk sk ok sk ok ok sk ok sk e ok sksk sk e ok sk sk sk sk ok sk sk sk e ok sksk ok e sk sk sk ok s ok sk sk ok ke ok sk sk ok ek ok ok
* copy2.c

*
* Computer Science 50
* David J. Malan
*
*

Copies a string.

11

Computer Science 50 Week 4 Wednesday: September 29, 2010
Fall 2010 Andrew Sellergren
Scribe Notes

*

* Demonstrates strings as pointers to arrays.
sk sk ok ok sk sk ok ok sk sk sk o sk sk sk sk ke ok sk sk sk ok ok sksk sk ok sk sk sk sk ok sk sk ok sk sk ok sksksk sk ok sk sk sk ke ok sksk sk sk sk sk sk sk ke sksk ok sk ok /

#include <cs50.h>

#include <ctype.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int
main(void)
{
// get line of text
printf("Say something: ");
char *s1 = GetString();
if (s1 == NULL)
return 1;

// allocate enough space for copy
char *s2 = malloc((strlen(sl) + 1) * sizeof(char));
if (s2 == NULL)

return 1;

// copy string

int n = strlen(sl);

for (int 1 = 0; i < n; i++)
s2[i] = s1[il;

s2[n] = ’\0’;

// change copy
printf ("Capitalizing copy...\n");
if (strlen(s2) > 0)

s2[0] = toupper(s2[0]);

// print original and copy
printf ("Original: %s\n", s1);
printf ("Copy: %s\n", s2);

// free memory

free(sl);
free(s2);

12

Computer Science 50 Week 4 Wednesday: September 29, 2010
Fall 2010 Andrew Sellergren
Scribe Notes

3.5

As before, we prompt the user for the string and then store the memory
address of the first character of that string (which lives on the heap) in
sl.

Now, we’re beginning to empower you with the tools to take user input
using your own methods rather than relying on CS 50’s library. The
primary tool for this will be malloc, which will give you the memory
you need to store the user’s input. malloc takes as its only argument
a number of bytes. If we want to dynamically figure out the number
of bytes in the user’s input, we do so by knowing that each character
in the string is a single byte and that the number of characters in the
string is the length of the string plus one extra character for the null
terminator. Thus, strlen(sl) + 1). To be explicit, we’ll also multiply
this by sizeof (char), even though we know it to be 1. If we’re talking
about a string “foo,” then we’re passing the value 4 to malloc.

At this point, after we’ve requested 4 bytes of memory from the heap
and assigned the memory address of the first byte to s2 (as returned by
malloc), our memory looks like this:

sl 52

s2 now points to a different chunk of memory than does s1. This new
chunk of memory is uninitialized, so we’ll put question marks to represent
its contents.

In case the user has given us a string that is too large to be stored in
memory, we check that s2 isn’t NULL.

To copy the actual string into the memory pointed to by s2, we iterate over
the characters of the string. Our terminating conditionisi < strlen(s1)
which equates to i < 3 in this case. Once the loop terminates, we need
to manually place the null terminator at the end of the string.

If we compile and run copy2, we see that it actually works!

Pointers to Other Data Types

Let’s write a short program that demonstrates the use pointers to integers
(int *) rather than pointers to characters (char *):

13

Computer Science 50 Week 4 Wednesday: September 29, 2010
Fall 2010 Andrew Sellergren
Scribe Notes

int
main(void)
{
int *x;
int *y;
x = malloc(sizeof (int));
X = 42;

This assignment is wrong because x previously stored the memory address
of an integer on the heap but then is overwritten to hold the number 42.
We'll then lose track of that memory on the heap that we asked for,
introducing a memory leak into our program. What we want is to store
the number 42 in the space we’ve allocated on the heap. To do that we
write this instead:

int
main(void)
{
int *x;
int *y;
x = malloc(sizeof (int));
*x = 42;

e What happens if we try to assign a value to y before we’ve allocated
memory for it?

int
main(void)
{
int *x;
int *y;
x = malloc(sizeof (int));
*x = 42;
*xy = 13; // BAD
}

More than likely, this will cause a segmentation fault. When we declared
y, we didn’t initialize it to have any value. Writing *y attempts to access
the contents of y as a memory address. But we have no way of knowing
if that memory address is a valid one and even if it is, it’s certainly not
memory that belongs to us. If y happens to have the value 0, for example,
we’ll be trying to access the memory at address 0 which, as we’ve already
seen, throws a fatal error.

14

Computer Science 50 Week 4 Wednesday: September 29, 2010
Fall 2010 Andrew Sellergren
Scribe Notes

e Assigning the value of x to y and then accessing the memory at y, however,

is okay:

int

main(void)

{
int *x;
int *y;
x = malloc(sizeof (int));
*x = 42;
y = x5
*y = 13;

}

To visualize this program in a more fun way, let’s turn to Binky!?

3The professor behind this video, Nick Parlante, also works at Google. Yes, I met him,
and yes, I asked him about Binky. He said Binky is doing well. If you’d like to meet him too,
maybe you should think about applying to Google. Ask me how!

15

http://cslibrary.stanford.edu/104/
mailto:asellerg@post.harvard.edu

	Announcements and Demos (0:00--8:00)
	From Last Time (8:00--15:00)
	Pointers (15:00--73:00)
	swap.c
	compare1.c
	copy1.c
	copy2.c
	Pointers to Other Data Types

