
Computer Science 50
Fall 2010
Scribe Notes

Week 5 Monday: October 4, 2010
Andrew Sellergren

Contents

1 Announcements and Demos (5:00–13:00) 2
1.1 Announcements . 2
1.2 Demos . 2

2 Problem Set 4 (0:00–5:00) 3

3 From Last Time (13:00–18:00) 3

4 A Closer Look at Memory (18:00–50:00) 3
4.1 bar.c . 3
4.2 Buffer Overrun Attacks . 8

5 Structs (50:00–68:00) 11
5.1 structs1.c . 11
5.2 structs2.c . 14

6 The CS50 Library (68:00–75:00) 16

1

Computer Science 50
Fall 2010
Scribe Notes

Week 5 Monday: October 4, 2010
Andrew Sellergren

1 Announcements and Demos (5:00–13:00)

1.1 Announcements

• This is CS50.

• 1 new handout.

• Quiz 0 is coming up on Wednesday October 13! This Wednesday, we’ll
provide a handout that decribes in detail where you’re to report (it won’t
be Sanders). Think of it as an opportunity to demonstrate the concepts
you’ve mastered, not to regurgitate what you’ve heard in lecture. You
won’t be asked to write entire programs, but only a few dozen lines of
code in bits and pieces. We understand the constraints of coding without
the aid of a compiler to catch your mistakes. Check out the quizzes page
for past quizzes and review material.

• Do avail yourself of the scribe notes on the lectures page.1 Andrew2 does
an unparalleled job of turning David’s gobbledygook, haphazard lectures
into eloquent, melodious prose. You might even call him3 The Voice of
CS50.

• The regularly scheduled walkthrough this week will be a course-wide re-
view session for the quiz. No problem set will be due next week.

• Today is the fifth Monday of the semester, so be sure to submit your
grading status change requests if you have them.

1.2 Demos

• Bugs have grown increasingly complex since the first, a literal insect, was
discovered inside a computer. For those of you who have worked with
Windows machines, you might have seen the Blue Screen of Death a time
or two. Although you still won’t be able to decipher it completely, you
might at least recognize that this blue screen provides some hexadecimal
numbers that more than likely correspond to memory addresses.

• Other error messages are more amusing, including ones that claim that
memory cannot be “read,” that a program failed because of “no error,”
or that ask you to press a key to reboot when a keyboard is not detected.
Amusingly, ATMs, electronic displays, and computers in display cases are
just as prone to these errors as any other computer. And, of course, the
most famous WTF4 error is “PC LOAD LETTER,” as popularized by
Office Space.

1Yeah, I realize the pointlessness of writing that here in the scribe notes. Bite me.
2That’s me!
3That’s me!
4Stands for “where’s the fun?”

2

http://cs50.net/quizzes
http://cs50.net/lectures
http://www.imdb.com/title/tt0151804/

Computer Science 50
Fall 2010
Scribe Notes

Week 5 Monday: October 4, 2010
Andrew Sellergren

2 Problem Set 4 (0:00–5:00)

• For Problem Set 4, you’ll be tasked with implementing the popular logic
game called Sudoku. Again you’ll be handed distribution code and again
you’ll be asked to fill in the blanks. Playing around with the staff solution,
you’ll notice that we’ve created the game board using ASCII art as we did
with the Game of Fifteen for Problem Set 3. Here, however, there’s no
need to clear the entire board and redraw it after each move thanks to a
graphical library named ncurses.

• For those unfamiliar with the game, Sudoku requires a player to fill in
nine 9x9 boxes with the digits 1 through 9 such that no two of the same
digit occupy the same box, row, or column. In the Hacker Edition, the
appropriate blanks will be highlighted in red if a number is placed incor-
rectly. Also in the Hacker Edition, if you hold down “h” on the keyboard,
the game will progressively solve itself.

• Check out binary sudoku!

3 From Last Time (13:00–18:00)

• We represent the state of a computer’s RAM using the visual of a stack
with frames that get added on and lopped off as a program calls and
returns from functions. The heap is the area of memory which is allocated
dynamically at runtime. Uninitialized local variables which are stored on
the stack may have junk values in them because their memory has been
recycled. This is why it is crucial to initialize your variables before you
ever use them.

• When a function returns and its stack frame is lopped off, the memory it
occupied is not actually cleared. You can imagine, then, that if a function
stores something like a password in a local variable and then returns, there
is the potential for the password to be later hijacked.

• The classical use case for the heap is when the amount of memory a
user will need is not known at compile time. In the quizzes example,
it is fairly shortsighted to hardcode the number of quizzes that will be
averaged before the program is run. Instead, we can prompt the user for
the number of quizzes and then allocate memory on the heap as necessary
using malloc.

4 A Closer Look at Memory (18:00–50:00)

4.1 bar.c

• Let’s take a look at bar.c as an example we can use to practice debugging
with GDB:

3

http://xkcd.com/74/

Computer Science 50
Fall 2010
Scribe Notes

Week 5 Monday: October 4, 2010
Andrew Sellergren

/**
* bar.c
*
* Computer Science 50
* David J. Malan
*
* Offers opportunities to play with pointers with GDB.
***/

#include <stdio.h>

int foo(int n);
void bar(int m);

int
main(void)
{

int a;
char * s = "hello, world";
printf("%s\n", &s[7]);
a = 5;
foo(a);
return 0;

}

int
foo(int n)
{

int b;
b = n;
b *= 2;
bar(b);
return b;

}

void
bar(int m)
{

printf("Hi, I’m bar!\n");
}

Now that the training wheels are off, we’ll be using char * to denote
a string. As such, we can manipulate strings as we would any other
pointer using what’s called pointer arithmetic. Because the characters of
a string are actually contiguous bytes in memory, writing &s[7] will give

4

Computer Science 50
Fall 2010
Scribe Notes

Week 5 Monday: October 4, 2010
Andrew Sellergren

us the substring of “hello, world” that starts at index 7. The address-of
operator gives us the memory location of the character at index 7 and
the remainder of the substring is contiguous in memory. So long as we
index into a location before the string’s null terminator, this syntax will
be valid.

• If we compile bar and run it with GDB, setting a breakpoint on main, we
see output like the following:

(gdb) break main
Breakpoint 1 at 0x80483fd: file bar.c, line 20.

0x80483fd is the memory address of main on the stack. What’s the deal
with the 0x at the beginning of this memory addresses? It’s simply a
convention to indicate that this number is in hexadecimal. How do we
count in hexadecimal? Whereas in binary you have 2 possible values for
each digit and in decimal you have 10 possible values for each digit, in
hexadecimal you have 16 possible values for each digit. Check out the
conversion chart below:5

Colors in HTML are often represented in hexadecimal as RGB triples, e.g.
0xff0000 for red, 0x00ff00 for green and 0x0000ff for blue as well as

5Source: Wikipedia.

5

http://en.wikipedia.org/wiki/Hexadecimal

Computer Science 50
Fall 2010
Scribe Notes

Week 5 Monday: October 4, 2010
Andrew Sellergren

everything in between. Generally, it’s not going to useful to you to know
where your program is located in RAM, but it might be useful to pay
attention to the last few digits to know where things are relative to each
other. In a few weeks, when we get to the forensics problem set, you’ll see
memory locations written in hexadecimal. One advantage of this is that
memory addresses are much shorter than they would be if we wrote them
in decimal.

• Returning to bar, we type run to get to the interesting part:

(gdb) run
Starting program: /home/malan/src4/bar

Breakpoint 1, main () at bar.c:20
20 char * s = "hello, world";
(gdb) list
15
16 int
17 main(void)
18 {
19 int a;
20 char * s = "hello, world";
21 printf("%s\n", &s[7]);
22 a = 5;
23 foo(a);
24 return 0;
(gdb) print a
$1 = 134513803

As you can see when we print the value of a, it contains junk because we
didn’t initialize it.

• Even s proves to be just a number when we print it out:

(gdb) print s
$2 = 0x312ff4 "|}\030"

Recall that pointers are actually implemented as integers, so this makes
sense. This memory address is actually junk, however, because the line
of code that initializes s hasn’t executed yet. In fact, what is stored at
that memory address, printed between double quotation marks after the
memory address itself, is also junk.

• Question: what happens if we print s+30? We get the following:

(gdb) print s+30
$3 = 0x313012 "\037"

6

Computer Science 50
Fall 2010
Scribe Notes

Week 5 Monday: October 4, 2010
Andrew Sellergren

Thirty bytes past s, we still get junk. If you opt to take CS61 after this
course, you’ll get plenty of experience with this kind of low-level memory
manipulation, as with one of the problem sets, you’ll be asked to extract
passwords from a program’s binary.

• After we execute line 20, s takes on the value of a valid memory address
that actually stores the string we’re interested in:

(gdb) next
21 printf("%s\n", &s[7]);
(gdb) print s
$4 = 0x8048534 "hello, world"

• When we execute the next line of code, we see that “world” is printed out.
We can also verify that accessing index 7 of our string returns the letter
“w”:

(gdb) next
world
22 a = 5;
(gdb) print s[7]
$5 = 119 ’w’

• Now, to verify the syntax we used to grab the “world” substring, we print
&s[7]:

(gdb) print &s[7]
$6 = 0x804853b "world"

What we’ve printed is s plus 7 bytes which turns out to be a valid string
just as s was. GDB prints character after character starting at this mem-
ory address and only stops when it finds the null terminator.

• Printing a now will give a junk value until we initialize it:

(gdb) print a
$7 = 134513803
(gdb) next
23 foo(a);
(gdb) print a
$8 = 5

• Because we want to examine the state of the program within the foo
function, we’re going to step into it using the aptly named step command.
We’ll then also step into the bar function:

7

Computer Science 50
Fall 2010
Scribe Notes

Week 5 Monday: October 4, 2010
Andrew Sellergren

(gdb) step
foo (n=5) at bar.c:31
31 b = n;
(gdb) next
32 b *= 2;
(gdb) next
33 bar(b);
(gdb) print n
$9 = 5
(gdb) print b
$10 = 10
(gdb) step
bar (m=10) at bar.c:40
40 printf("Hi, I’m bar!\n");
(gdb) print m
$11 = 10

Using GDB, we are also able to confirm that the layout of memory is as
we expect. Instead of printing out the values of variables, let’s print out
their memory addresses:

(gdb) print &a
$1 = (int *) 0xbffff678
(gdb) next
21 printf("%s\n", &s[7]);
(gdb) next
world
22 a = 5;
(gdb) next
23 foo(a);
(gdb) step
foo (n=5) at bar.c:31
31 b = n;
(gdb) print &b
$2 = (int *) 0xbffff64c

The memory addresses of a and b are very close in value, but it appears
that b’s is actually less than a’s. Even though we think of the stack as
growing upward, the memory addresses are actually getting smaller. This
actually poses a security threat because if you store a very large number
as a local variable in a function, you can potentially overwrite the lower
frames on the stack and hijack the program.

4.2 Buffer Overrun Attacks

• The following code demonstrates the security vulnerability we just dis-
cussed:

8

Computer Science 50
Fall 2010
Scribe Notes

Week 5 Monday: October 4, 2010
Andrew Sellergren

#include <string.h>

void foo (char *bar)
{

char c[12];

memcpy(c, bar, strlen(bar)); // no bounds checking...
}

int main (int argc, char **argv)
{

foo(argv[1]);
}

Don’t be confused by the char **argv notation. Although we usually
write char *argv[], remember that arrays are also pointers, so the two
are equivalent.

• One problem with the program above is that we’re not checking to make
sure the user provided a command-line argument. Instead, we’re blindly
assuming that they did and then passing it to a function named foo.

• Within foo, we declare an array c that can store 12 characters. We
then call memcpy, which, as its name implies, copies the memory from the
user-provided command-line argument into c. However, we do no bounds
checking on c, so if the user-provided command-line argument is longer
than 12 characters, we’ll end up overwriting memory that isn’t ours. If
the command-line argument is extremely long, say, 1000 characters, our
program might fail with a segmentation fault. However, if it’s not much
longer than 12 characters, we can overwrite important information on the
stack, including the return address of the function that called foo, without
causing the program to fail. We can visualize this like so:6

6Source: Wikipedia.

9

http://en.wikipedia.org/wiki/Stack_buffer_overflow

Computer Science 50
Fall 2010
Scribe Notes

Week 5 Monday: October 4, 2010
Andrew Sellergren

As the red rectangle indicates, the stack is used to store not only func-
tion frames and parameters, but also a function’s return address. This
way, when a function finishes executing, the program will know where in
memory to return in order to continue.

• As you can see from this diagram, if we write more than 12 characters to
c, we’re going to first overwrite the value of bar followed by something
called the saved frame pointer, which allows the computer to remember
where in RAM it currently is. Next, we’ll overwrite or corrupt the return
address. If an adversary knows where on the stack this return address is,

10

Computer Science 50
Fall 2010
Scribe Notes

Week 5 Monday: October 4, 2010
Andrew Sellergren

he can overwrite it with a valid but different value which contains some
malicious code he wants to execute. Then, instead of returning to the
correct memory address, the program will jump to the malicious code
instead.

• Many of these security vulnerabilities are discovered by trial and error. If
you can cause a program to crash, you’ve discovered a bug that you can
potentially exploit with a little more savvy.

• Buffer overrun attacks are only possible in a few low-level languages such
as C. More modern programming languages like Java have built-in security
features which prevent them.

• Question: what if you know exactly how much memory you’re going to
need, do you still need to do bounds checking? Theoretically, yes, but in
the real world, you’re not going to be the only programmer on a project
or the only user of a program, so you need to account for malicious or
unknowing users.

• Question: what is a parameter? It’s an argument provided to a function.

• Question: to recap, what is stored on the stack and what is stored on
the heap? Local variables, function arguments, and return addresses are
stored on the stack. Anything that you use malloc to store goes on the
heap.

5 Structs (50:00–68:00)

5.1 structs1.c

• Before we go over the syntax for defining a struct, let’s take a look at
structs1.c to see how to use one:

/**
* structs1.c
*
* Computer Science 50
* David J. Malan
*
* Demonstrates use of structs.
***/

#include <cs50.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include "structs.h"

11

Computer Science 50
Fall 2010
Scribe Notes

Week 5 Monday: October 4, 2010
Andrew Sellergren

// class size
#define STUDENTS 3

int
main(void)
{

// declare class
student class[STUDENTS];

// populate class with user’s input
for (int i = 0; i < STUDENTS; i++)
{

printf("Student’s ID: ");
class[i].id = GetInt();

printf("Student’s name: ");
class[i].name = GetString();

printf("Student’s house: ");
class[i].house = GetString();
printf("\n");

}

// now print anyone in Mather
for (int i = 0; i < STUDENTS; i++)

if (strcmp(class[i].house, "Mather") == 0)
printf("%s is in Mather!\n\n", class[i].name);

// free memory
for (int i = 0; i < STUDENTS; i++)
{

free(class[i].name);
free(class[i].house);

}
}

So far we’ve only talked about primitive data structures, but what if we
want to store a chunk of related information about a single entity? For
example, a student has a name, a dorm, a phone number, etc. Can we
collect all these pieces of information into a single data structure?

• Even though this is a fairly straightforward definition of a student type,
we’ve abstracted it away into a separate header file so that it might be

12

Computer Science 50
Fall 2010
Scribe Notes

Week 5 Monday: October 4, 2010
Andrew Sellergren

used by many different programs, including structs1.c and structs2.c.
These will include this header file by writing:

#include "structs.h"

Here we’re using quotation marks instead of angle brackets because the
header file is local rather than on the server.

• We define the student type within structs.h using the typedef com-
mand:

/**
* structs.h
*
* Computer Science 50
* David J. Malan
*
* Defines a student for structs{1,2}.c.
***/

// structure representing a student
typedef struct
{

int id;
char *name;
char *house;

}
student;

The typedef struct syntax begins our new definition of a variable type.
Within the curly braces, we declare the related variables that we want
to belong to this struct. Finally, after the closing curly brace, we can
optionally give the struct a name.

• So within structs1.c, we’ve declared an array named class that contains
three instances of the variable type student. The rest of the program asks
the user for input to populate our structs, checking for any students in
Mather so that we can call them out. Notice the syntax whereby we use
a period to refer to the inner elements of a struct.

• Question: how is a struct stored in memory? A struct essentially contains
enough space for its component data types to be contiguous in memory.
In the case of student, an int is stored next to two char *’s for a total
of 12 bytes chunked together.7

7It’s possible that the compiler will give you more than 12 bytes of memory so that your
data types line up cleanly, but we won’t concern ourselves with that.

13

Computer Science 50
Fall 2010
Scribe Notes

Week 5 Monday: October 4, 2010
Andrew Sellergren

• Question: what happens when we declare an array of student’s? If we
ask for an array of size 3, then we’re getting 3 structs that are contiguous
in memory, for a total chunk size of 36 bytes.

• For the past few weeks, we’ve actually been writing buggy code whenever
we call GetString from the CS50 Library. Under the hood, GetString
calls malloc in order to store the string on the heap. But because memory
on the heap isn’t freed until we explicitly do so, our programs have been
leaking memory. From now on, we’ll need to call free on any data type
that’s been stored on the heap and that we’re done using.

• If we compile and run structs1, we can, in fact, store information related
to 3 students and call out any of them that are in Mather.

5.2 structs2.c

• structs2.c is slightly more compelling because it enables us to store more
permanently the data we’ve collected from the user:

/**
* structs.c
*
* Computer Science 50
* David J. Malan
*
* Demonstrates use of structs.
***/

#include <cs50.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include "structs.h"

// class size
#define STUDENTS 3

int
main(void)
{

// declare class
student class[STUDENTS];

// populate class with user’s input

14

Computer Science 50
Fall 2010
Scribe Notes

Week 5 Monday: October 4, 2010
Andrew Sellergren

for (int i = 0; i < STUDENTS; i++)
{

printf("Student’s ID: ");
class[i].id = GetInt();

printf("Student’s name: ");
class[i].name = GetString();

printf("Student’s house: ");
class[i].house = GetString();
printf("\n");

}

// now print anyone in Mather
for (int i = 0; i < STUDENTS; i++)

if (strcmp(class[i].house, "Mather") == 0)
printf("%s is in Mather!\n\n", class[i].name);

// let’s save these students to disk
FILE *fp = fopen("database", "w");
if (fp != NULL)
{

for (int i = 0; i < STUDENTS; i++)
{

fprintf(fp, "%d\n", class[i].id);
fprintf(fp, "%s\n", class[i].name);
fprintf(fp, "%s\n", class[i].house);

}
fclose(fp);

}

// free memory
for (int i = 0; i < STUDENTS; i++)
{

free(class[i].name);
free(class[i].house);

}
}

This program is exactly the same as structs1.c except for a chunk of
code at the bottom. fopen takes two arguments: a filename and a file
mode. If there exists no file with the given filename, it creates a new one
so long as the file mode is set to “w” for write. Assuming it was successful
in creating the file, fopen returns a pointer-to-FILE. If it wasn’t successful,
it will return NULL, which is why we check for it before attempting to write
to it.

15

Computer Science 50
Fall 2010
Scribe Notes

Week 5 Monday: October 4, 2010
Andrew Sellergren

• Once we’re sure we have a valid file pointer, we loop over our array of
structs and access the elements of each struct. Notice that instead of print-
ing them out however, we’re passing them to a function called fprintf
which writes them to the file pointer we just created.

• Generally speaking, when you quit a program without having explicitly
freed the memory you allocated, it will still be returned to the operating
system. However, best practice is to release it by passing it to free. We
will require it from here on out!

• When we make and run structs2 and input the same data as before, we
see that a file named database is created.

6 The CS50 Library (68:00–75:00)

• Let’s peek under the hood of the CS50 Library, particularly at GetString:

/*
* Reads a line of text from standard input and returns it as a string,
* sans trailing newline character. (Ergo, if user inputs only "\n",
* returns "" not NULL.) Leading and trailing whitespace is not ignored.
* Returns NULL upon error or no input whatsoever (i.e., just EOF).
*/

string
GetString(void)
{

// growable buffer for chars
string buffer = NULL;

// capacity of buffer
unsigned int capacity = 0;

// number of chars actually in buffer
unsigned int n = 0;

// character read or EOF
int c;

// iteratively get chars from standard input
while ((c = fgetc(stdin)) != ’\n’ && c != EOF)
{

// grow buffer if necessary
if (n + 1 > capacity)
{

// determine new capacity: start at CAPACITY then double

16

Computer Science 50
Fall 2010
Scribe Notes

Week 5 Monday: October 4, 2010
Andrew Sellergren

if (capacity == 0)
capacity = CAPACITY;

else if (capacity <= (UINT_MAX / 2))
capacity *= 2;

else
{

free(buffer);
return NULL;

}

// extend buffer’s capacity
string temp = realloc(buffer, capacity * sizeof(char));
if (temp == NULL)
{

free(buffer);
return NULL;

}
buffer = temp;

}

// append current character to buffer
buffer[n++] = c;

}

// return NULL if user provided no input
if (n == 0 && c == EOF)

return NULL;

// minimize buffer
string minimal = malloc((n + 1) * sizeof(char));
strncpy(minimal, buffer, n);
free(buffer);

// terminate string
minimal[n] = ’\0’;

// return string
return minimal;

}

To begin, we assume that the user’s input will be 0 bytes in length. This
is safe because we know we’re going to grow our storage in kind with the
user’s input, so we might as well err on the lower side to begin with. We’re
keeping track of both the potential size of the user’s input in capacity
and the actual size of the user’s input in n. Both are of type unsigned int
because we know that the size of the user’s input will never be negative.

17

Computer Science 50
Fall 2010
Scribe Notes

Week 5 Monday: October 4, 2010
Andrew Sellergren

• The function fgetc is grabbing one character at a time from stdin which
essentially represents the keyboard. We then check if that character is
the special character EOF which signifies that the user has finished giving
input, perhaps via the return key. At the end of the loop, we add this
character to the buffer which we’ll eventually return. What we glossed
over in the beginning were the lines of code that check if adding another
character to the buffer would overflow it and, if so, ask for more memory
for the buffer.

• In addition to malloc, we call realloc which reuses and expands the
memory we’ve already asked for.

• Although the other functions in the CS50 Library return different data
types, you’ll notice that most of them depend on GetString.

• The major takeaway here is that freeing memory is extremely important.
The reason your computer may feel like it’s crawling if it’s been left on
for a long time is that programs you’ve executed failed to free some of
the memory they were using. As a result, your operating system has less
memory to work with. Besides the performance issues of failing to free
memory, there are also security implications. More on that next time.

18

	Announcements and Demos (5:00--13:00)
	Announcements
	Demos

	Problem Set 4 (0:00--5:00)
	From Last Time (13:00--18:00)
	A Closer Look at Memory (18:00--50:00)
	bar.c
	Buffer Overrun Attacks

	Structs (50:00--68:00)
	structs1.c
	structs2.c

	The CS50 Library (68:00--75:00)

