
Computer Science 50
Fall 2010
Scribe Notes

Week 5 Wednesday: October 6, 2010
Andrew Sellergren

Contents

1 Announcements and Demos (0:00–3:00) 2

2 The CS50 Library (3:00–21:00) 2
2.1 scanf1.c . 3
2.2 scanf2.c . 4

3 Linked Lists (21:00–50:00) 5
3.1 File I/O . 6
3.2 Operations . 6

3.2.1 Search . 6
3.2.2 Insertion . 7
3.2.3 Deletion . 7

3.3 list1.c . 8

1

Computer Science 50
Fall 2010
Scribe Notes

Week 5 Wednesday: October 6, 2010
Andrew Sellergren

1 Announcements and Demos (0:00–3:00)

• This is CS50.

• 0 new handouts.

• No lecture on Monday because of the holiday. The quiz will be on Wednes-
day during normal lecture time. Expect an e-mail regarding where you
are to report based on your last name. If you don’t receive this e-mail for
some reason, check the course website.

• The music you heard on your way into Sanders was by way of special
request. Joanna wanted to celebrate her two-year anniversary with her
boyfriend David by playing one of his favorite DDR songs. Congrats! The
song, in fact, commemorates the Konami Code which unlocked a cheat in
the original Contra game for NES. Try entering the Konami Code on the
course website!1 For those of you who don’t know what Contra is, check
out this video.

• Speaking of games, check out this XKCD cartoon which you should now
understand.

2 The CS50 Library (3:00–21:00)

• Although it’s not important that you understand every line of code in
the CS50 Library at this point in the semester, you should have a general
sense of what it does.

• The CS50 Library consists of two files: cs50.h and cs50.c. cs50.h is the
header file that contains the function prototypes and a slew of comments.
cs50.c is the file that contains the actual function definitions.

• At the top of cs50.h, we use a trick with #ifndef and #define to check
if a constant called _CS50_H has already been defined. If it hasn’t, then
we define it as the entirety of the header file. We do this to prevent the
header file from being included more than once.

• Within cs50.h, we include a few other header files, among them stdbool.h,
which defines the constants true and false.

• The line typedef char *string makes the keyword string an alias for
the variable type char *.

• As we saw last time, GetString is defined such that we grow a buffer as
the user provides more and more input. We do so by calling malloc and
realloc to ask the operating system for more memory.

1And in Google Reader!

2

http://www.youtube.com/watch?v=kWMyoNhGHbk
http://xkcd.com/138/

Computer Science 50
Fall 2010
Scribe Notes

Week 5 Wednesday: October 6, 2010
Andrew Sellergren

• At the end of GetString, we do some cleanup whereby we ask for another
buffer that’s exactly the size of the user’s input (plus an additional byte
for the null terminator), copy the user’s input into it, and then free the
original buffer.

• The other functions in cs50.c depend on GetString to obtain the user’s
input. We then pass the user’s input, stored in line, to a function sscanf
which looks for format strings within it. In this case, we’re looking for an
integer followed by a character. What we’re checking, however, is if only
the integer was found, in which case sscanf will return 1, the if condition
will evaluate to true, and the integer will be returned. If both an integer
and a character are captured, sscanf will return 2 and the user will be
asked to retry.

• We actually have to pass &n and &c because if we pass n and c, the values
extracted from the user’s input will be lost when sscanf returns, just as
we saw with buggy3.c.

• Question: what will sscanf return if the user inputs only characters?
sscanf will return 0 in this case because it will not have been able to
populate %d first.

2.1 scanf1.c

• scanf1.c demonstrates the traditional way of obtaining user input via
scanf:

/**
* scanf1.c
*
* Computer Science 50
* David J. Malan
*
* Reads a number from the user into an int.
*
* Demonstrates scanf and address-of operator.
***/

#include <stdio.h>

int
main(void)
{

int x;
printf("Number please: ");
scanf("%d", &x);

3

Computer Science 50
Fall 2010
Scribe Notes

Week 5 Wednesday: October 6, 2010
Andrew Sellergren

printf("Thanks for the %d!\n", x);
}

When we compile and run scanf1, we see that it works as long as we
provide integer input. However, if we enter something like “abc,” the
program tries to cast our input to an integer and ultimately demonstrates
unexpected behavior. This is why we introduced the CS50 Library: to
save you the trouble of implementing these functions yourself.

2.2 scanf2.c

• Try to spot the bug in scanf2.c:

/**
* scanf2.c
*
* Computer Science 50
* David J. Malan
*
* Reads a string from the user into memory it shouldn’t.
*
* Demonstrates possible attack!
***/

#include <stdio.h>

int
main(void)
{

char *buffer;
printf("String please: ");
scanf("%s", buffer);
printf("Thanks for the \"%s\"!\n", buffer);

}

The variable buffer is an uninitialized pointer. Think back to Binky: we
have a pointer, but not a valid pointee, which is bad news. When we try
to interpret the junk that’s in buffer as a memory address, the program
fails with a segmentation fault. Even worse, we might be able to trigger
a buffer overrun attack.

• Question: is the value in buffer being interpreted as a memory address?
Yes, and to prove it, we can print it out using printf with the format
string %d. When we do so, we get a number like 2719732.

4

Computer Science 50
Fall 2010
Scribe Notes

Week 5 Wednesday: October 6, 2010
Andrew Sellergren

• One possible defense against this would be to allocate buffer as an array
with a large number of bytes. Even then, however, if the user knows what
that number of bytes is, he can exploit your program by entering input
longer than that. The real solution is to code defensively as we did in the
CS50 Library.

3 Linked Lists (21:00–50:00)

• When we faced the problem of storing many similar variables, we discov-
ered the convenience of an array. Not only does an array prevent us from
having to declare variable after variable of the same type, it allows us
random access to its elements using bracket notation. That is, we can
immediately find an element in the array if we know its index.

• One thing that arrays are not good for is insertion. We saw this during
our sorting demos when we wanted to move an element from the beginning
to the middle. In order to do so, we had to swap it with another element
in order to avoid having to shift all the in-between elements down by one.

• GetString highlights another shortcoming of arrays: they are of finite
size. You have to know in advance how big they need to be. If you guess
wrong, you must go through the expensive operation of allocating more
memory and copying the old memory into the new. Generally, anytime
you need to contact the operating system, as you do when you request
more memory, you incur a performance penalty.

• Enter linked lists. Each of the nodes in a linked list consists of both a
value and a pointer to the next nodet in the list. This data structure
is compelling because insertion is very fast. Instead of a large chunk of
contiguous memory, we now have scattered small chunks of memory that
are stitched together by pointers.

• In order to define a linked list node, we’ll turn to the syntax for structs
that we introduced last time:

typedef struct node
{

int n;
struct node *next;

}
node;

Notice that the syntax is slightly different from what we used to declare a
student struct. By using the above, we can declare a new node instead of
a new struct node, which are actually the same thing, the former simply
being shorter. The pointer in this struct is going to be pointing to another
one of itself, that is, another node.

5

Computer Science 50
Fall 2010
Scribe Notes

Week 5 Wednesday: October 6, 2010
Andrew Sellergren

3.1 File I/O

• Last time, we used a function fprintf to write data to an output file.
This was our first foray into file I/O, or file input/output. For Problem
Set 5, you’ll be manipulating files in order to recover a series of JPEGs
from a formatted flash drive. For simplicity’s sake, these JPEGs will be
contiguous chunks of memory. However, on most operating systems, files
are not stored as large contiguous chunks, but rather as small scattered
chunks. For that reason, files are implemented as linked lists.

• Because files are implemented as linked lists, it’s very easy for them to
become fragmented and for those fragments to become “lost” on disk. If
you delete a pointer that’s pointing to a node of a linked list, then you
have no way of accessing the memory that was once stored in that node.
Whatever was stored in that memory is not actually deleted, however,
but only orphaned. When for performance reasons, the operating system
gives you a larger chunk of memory than you need, say 512 bytes for 200
characters, the memory you don’t use—the slack space—often contains
remnants of these orphaned memory chunks. These are honeypots for
forensic data analysts who are investigating a hard drive as evidence.

• To elaborate, when you delete a file on your computer, the actual bits
that comprise the contents of the file remain intact. All that is deleted
is the entry in the directory table, which is simply a list of file pointers
maintained by your operating system. Thus, you can recover the original
contents of the file if you can scan the hard drive and you know what
you’re looking for, as we will do in Problem Set 5.

• Mac OS is better than other operating systems in that it offers an option
to “Secure Empty Trash,” which erases the entry in the directory table as
well as zeroes out the actual memory corresponding to the file.

3.2 Operations

3.2.1 Search

• In order to visualize a linked list, we’ll ask 5 volunteers to come on stage
and hold pieces of paper with numbers on them. In addition to holding the
pieces of paper, the volunteers will point with their left hand to another
volunteer to signify the next pointer pointing to another node in the list.
The last volunteer will point to no one since he is at the end of the list.
The values in the list will be in sorted order from minimum to maximum.
In order to store a linked list, we need only to store a single pointer to the
first node of the list; let’s call it first. From first, we can find all the
other nodes in the list simply by following their next pointers.

• While optimal for insertion, linked lists are suboptimal for access. Arrays
offer random access, but linked lists require stepping through the elements

6

Computer Science 50
Fall 2010
Scribe Notes

Week 5 Wednesday: October 6, 2010
Andrew Sellergren

one at a time. In order to do so, we must use arrow notation to both access
and dereference the next pointer inside each node.

• Searching for a value in the linked list is a matter of traversing the linked
list and checking each value along the way.

3.2.2 Insertion

• To begin the process of inserting a value into the linked list, we malloc
enough memory to hold a new node and place in it the value of interest.
We’ll call the pointer to this memory (as returned by malloc) newptr.

• As with search, we traverse the list, this time checking each value to see
if it is larger than the value we want to insert. If we reach the end of the
list and find that no values are larger than the value we wish to insert,
then we assign newptr to the current last node’s next pointer (thereby
pointing it to the chunk of memory we just malloc’ed) and we assign NULL
to the next pointer of our newly inserted last node.

• If we need to insert a node at the beginning of the list, we take only
two steps (after traversing to determine that the number belongs at the
beginning of the list). First, we assign first to the next pointer of our
newly allocated node. Second, we point first to our newly inserted node.
The order of these steps is important. If we first pointed first to our
newly allocated node, we would lose track of our entire linked list!

• Insertion into the middle of a linked list is the most complicated case.
Again, we traverse the list until we find the right position for our new
node. We’ll see in this case that we need two pointers when we traverse
the list, the first to point to the current node (ptr) and the second to
point to the previous or predecessor node (predptr). When the current
node’s value is larger than the value of the new node we’re inserting, we
know that the new node belongs after predptr. In order, we point the
new node’s next pointer to ptr and predptr’s node’s next pointer to the
new node. Whew.

• Because we have to traverse the list each time we want to insert an element,
insertion to a linked list is in O(n). That is, in the worst case, we’ll have
to take n steps through the list in order to insert a node at the end.

3.2.3 Deletion

• To delete a node in the middle of the list, we point a temporary node such
as ptr to the node we wish to delete. We then point predptr to the node
after the node we wish to delete. Finally, we call free on the node that
curr is pointing to.

7

Computer Science 50
Fall 2010
Scribe Notes

Week 5 Wednesday: October 6, 2010
Andrew Sellergren

• To delete a node at the end of the list, we point ptr to the last node in the
list and update the next pointer of predptr to point to NULL. We then
call free on ptr.

• To delete a node at the beginning of the list, we begin by pointing predptr
and ptr at the first and second nodes in the list, respectively. We then
call free on predptr and update first to point to ptr.

• In all these cases, the order in which we free nodes and update pointers
is extremely important so that we don’t orphan single nodes or entire
segments of the list.

3.3 list1.c

• Let’s see how we might implement linked list operations in actual C code.
The various operations which are associated with linked lists are displayed
on the start-up menu of list1:

MENU

1 - delete
2 - find
3 - insert
4 - traverse
0 - quit

The program itself enters a do while loop that waits for the user’s menu
selection. Once the user has made a selection, list1 calls the appropriate
function using a switch statement:

// get command
printf("Command: ");
c = GetInt();

// try to execute command
switch (c)
{

case 1: delete(); break;
case 2: find(); break;
case 3: insert(); break;
case 4: traverse(); break;

}

Let’s assume we chose 3 for “insert”:

/*
* Tries to insert a number into list.

8

Computer Science 50
Fall 2010
Scribe Notes

Week 5 Wednesday: October 6, 2010
Andrew Sellergren

*/

void
insert(void)
{

// try to instantiate node for number
node *newptr = malloc(sizeof(node));
if (newptr == NULL)

return;

// initialize node
printf("Number to insert: ");
newptr->n = GetInt();
newptr->next = NULL;

// check for empty list
if (first == NULL)

first = newptr;

// else check if number belongs at list’s head
else if (newptr->n < first->n)
{

newptr->next = first;
first = newptr;

}

// else try to insert number in middle or tail
else
{

node *predptr = first;
while (true)
{

// avoid duplicates
if (predptr->n == newptr->n)
{

free(newptr);
break;

}

// check for insertion at tail
else if (predptr->next == NULL)
{

predptr->next = newptr;
break;

}

9

Computer Science 50
Fall 2010
Scribe Notes

Week 5 Wednesday: October 6, 2010
Andrew Sellergren

// check for insertion in middle
else if (predptr->next->n > newptr->n)
{

newptr->next = predptr->next;
predptr->next = newptr;
break;

}

// update pointer
predptr = predptr->next;

}
}

// traverse list
traverse();

}

• Once malloc returns, we do a sanity check to make sure it didn’t return
NULL. If it did and you were to try to dereference it, your program would
seg fault. This is a feature of C.2 Essentially, the compiler is preventing
you from accessing the memory address 0x0, even though it does exist.

• In the next few steps, we follow those which we walked through a few
moments ago. We take in the user input and assign it to the new node in
addition to pointing its next pointer to NULL. We do so using the arrow
notation that we mentioned briefly:

// initialize node
printf("Number to insert: ");
newptr->n = GetInt();
newptr->next = NULL;

• First, we check if the list is empty, which is the easiest case. If the list is
empty, the node we’re inserting becomes the entire list.

• Next, we check if the new node belongs at the head of the list, i.e. if its
value is less than the value of the first node:

// else check if number belongs at list’s head
else if (newptr->n < first->n)
{

newptr->next = first;
first = newptr;

}

2When you become an enterprise-level programmer, everything’s a feature and nothing’s
a bug.

10

Computer Science 50
Fall 2010
Scribe Notes

Week 5 Wednesday: October 6, 2010
Andrew Sellergren

first is a pointer to a node, so we must use the arrow notation to access
the value it stores in n and compare it to the value of the node we’re
inserting. If first’s value is greater than the value to be inserted, we
first point the next pointer of newptr at first and then point first to
newptr. If we reversed the order of these two steps, we would orphan the
entire list.

• When we tackle the middle and end cases, we’ll need to bring in predptr,
which plays the same role as we did when we traversed the list looking for
the place to insert the new node. First we’re checking for duplicates and
if we find the value is already inserted, then we won’t insert it again.

• The end case, or tail case, is easier to handle than the middle case. All
we need to do is point the next pointer of predptr, which is pointing at
the last element of the list, to the new node.

• The middle case is perhaps the most complicated, yet it only actually
requires two pointer updates. Thus, we’ve only seen two general cases:
one that requires a single pointer update and one that requires two pointer
updates. We’ll gloss over the middle case for now, but do dive into the
code we’ve provided and reconsider the examples we walked through with
our volunteers.

• find() is a little less complicated than insert():

/*
* Tries to find a number in list.
*/

void
find(void)
{

// prompt user for number
printf("Number to find: ");
int n = GetInt();

// get list’s first node
node *ptr = first;

// try to find number
while (ptr != NULL)
{

if (ptr->n == n)
{

printf("\nFound %d!\n", n);
sleep(1);
break;

11

Computer Science 50
Fall 2010
Scribe Notes

Week 5 Wednesday: October 6, 2010
Andrew Sellergren

}
ptr = ptr->next;

}
}

Here, we keep walking through the list as long as ptr isn’t NULL, that is, as
long as we’re not at the end of the list. During each iteration of the loop,
we compare the current node’s value against the user-provided input. If
the two are equal, then we announce as much and break out of our loop.

• Because this is a while loop, we must take care of the iteration explicitly:

ptr = ptr->next;

This is much like i++ in the other while loops we’ve looked at. We’re
taking ptr, which points at the current node, and reassigning it to point
to the next node.

• Other data structures include stacks, which exhibit last-in-first-out (LIFO)
storage, and queues, which exhibit first-in-first-out (FIFO) storage.

12

	Announcements and Demos (0:00--3:00)
	The CS50 Library (3:00--21:00)
	scanf1.c
	scanf2.c

	Linked Lists (21:00--50:00)
	File I/O
	Operations
	Search
	Insertion
	Deletion

	list1.c

