
Computer Science 50
Fall 2010
Scribe Notes

Week 9 Monday: November 1, 2010
Andrew Sellergren

Contents

1 Announcements and Demos (0:00–10:00) 2

2 Problem Set 7 (10:00–19:00) 2

3 From Last Time (19:00–34:00) 3

4 More with Forms and PHP (34:00–46:00) 4
4.1 froshims4.php . 4
4.2 froshims5.php . 6
4.3 froshims6.php . 8

5 Database-driven Websites (46:00–55:00) 11
5.1 register8.php . 12

6 More on Problem Set 7 (55:00–58:00) 13

7 PHP and MySQL (58:00–72:00) 14
7.1 register8.php (cont’d) . 14
7.2 registrants.php . 15

1

Computer Science 50
Fall 2010
Scribe Notes

Week 9 Monday: November 1, 2010
Andrew Sellergren

1 Announcements and Demos (0:00–10:00)

• This is CS50.

• 1 new handout.

• Many exciting things in store this week, including teaching you how to
re-implement the deprecated (with good reason) HTML blink tag using
JavaScript!

• Movie night hosted by Microsoft will be held this Friday at 7:30 PM at
the New England Research and Development (NERD) center. There will
be pizza, candy, and a showing of Office Space! RSVP at cs50.net/movie.

• Coming up are CS50 Seminars in which staff members and course affiliates
give short lectures on topics of interest in technology, particularly those
which might have bearing on final projects. Check out this year’s lineup.
Be sure to RSVP so that the seminar leader can find an optimal day and
time.

• The Final Project Pre-proposal is due this Monday! As the specification
details, it need only be a short e-mail to your teaching fellow bouncing
ideas off him or her.

• Today in Mather House JCR at 5 PM, the IOP welcomes Alec Ross, the
Senior Advisor for Innovation to Hillary Clinton, who heads up the ad-
ministration’s efforts to find practical technological solutions to problems
like healthcare and poverty.

• Many of you probably received the same spam message that David did,
asking him as a Harvard webmail user to provide his login credentials
so that his account wouldn’t be shut down. Hopefully you didn’t actu-
ally provide your credentials, as this was a fairly obvious phishing attack.
Phishing attacks are attempts to steal login information for legitimate
websites by creating phony websites that impersonate them. Based on
what we’ve learned of HTML, we know that the link in the e-mail which
appeared to point to harvard.edu, could easily point to a phony website
like so:

http://Harvard.edu/Secure/login

In most browsers, you can hover over a link to see where it leads and we
highly recommend doing so before clicking links from untrusted sources.

2 Problem Set 7 (10:00–19:00)

• In Problem Set 7, you’ll be tasked with implementing a stock-trading
website which will allow users to register, login, and manage fake stock

2

http://www.imdb.com/video/screenplay/vi4159963929/
http://cs50.net/movie
http://cs50.net/seminars

Computer Science 50
Fall 2010
Scribe Notes

Week 9 Monday: November 1, 2010
Andrew Sellergren

portfolios based on data from Yahoo! Finance. The transactions that
users make, namely buying and selling stocks, will be logged in a MySQL
database.

• You should play around with the staff solution before implementing your
own. Also click the play the Big Board link to compete with your class-
mates for the title of best stock trader.

• If we go to Yahoo! Finance and enter in a stock symbol, we can see near-
realtime data on its price. How do we go about retrieving this data for
our own application’s use? We could resort to screen-scraping, meaning
we write a script to make an HTTP GET request (notice the stock symbol
becomes embedded in the URL when we do a lookup) for the stock lookup
page and pull out the data we’re interested in. We could even write a cron
job, a scheduled programmatic task, that does this periodically. However,
this technique is tedious and not robust, as the HTML source code is
often messy and our screen-scraping program will break as soon as the
page’s format changes. What’s more convenient is the “Download Data”
link under Toolbox which actually points to a different URL. This URL
actually spits out a CSV (comma-separated values) file. A CSV file is
a special kind of plaintext file that stores data with values separated by
commas, as its name implies. CSV files are particularly easy to parse
with scripting languages like PHP, so when it comes to grabbing Yahoo!
Finance data, we’ll be better off using this download link.

• When we download this CSV file and double click to open it, we see that
it’s nicely displayed in column format in Excel. However, we can also open
this file in a simple text editor and see that it contains nothing but a single
line of strings and numbers delimited by commas.

• For Problem Set 7, we’ll actually do much of the heavy lifting for you.
We’ve written a function that will grab the CSV file from Yahoo! Finance,
parse it, and return it to you as a PHP variable.

3 From Last Time (19:00–34:00)

• In our first foray into PHP, we were able to create a website where freshmen
could provide their registration information which we would then throw
away. Eventually, however, we were able to write enough code to e-mail
that information to a designated account rather than discarding it.

• Considering where we’ve come from with the verbosity of C, the amount
of PHP code we had to write in order to send an e-mail was comparatively
small. We used the dot operator to concatenate the pieces of the user’s in-
formation and then a function called mail to actually send them. Splicing
together strings in PHP proves to be much easier than in C because arrays
don’t have a fixed size. In fact, the variable $_POST was a special kind of

3

http://cs50.net/finance
https://www.cs50.net/finance/play.php
http://finance.yahoo.com/

Computer Science 50
Fall 2010
Scribe Notes

Week 9 Monday: November 1, 2010
Andrew Sellergren

array that allowed us to store data indexed with a string rather than a
number. So $_POST["name"] contained the user’s name, for example. We
call name a key for this array.

• Question: what happens when you try to access a key in the $_POST array
that doesn’t exist? PHP will return the empty string.

• $_POST is a special variable called a superglobal. Whenever a PHP page
is accessed via a form submission using the POST method, this variable
will be automatically populated with the submitted data. The action
attribute of the form tag specifies the page that will receive the data
submitted by our form. The method attribute of the form tag is either
GET or POST, where GET means that the data is appended to the URL
and POST means that the data is appended to the HTTP headers. GET
is useful for creating URLs that can be bookmarked, but POST is useful
for submitting sensitive or lengthy data.

• In our form tag, we have input tags that have different values for the
type attribute. In this example, we have text, checkbox, and radio for
the name, captain, and gender fields respectively.

• In register3.php, we first do a sanity check: if any of the name, gender,
and captain keys in the $_POST array have not been set, i.e. if the user
didn’t fill in these inputs in the form, then we’ll print out a message telling
the user to enter all required fields and provide him with a link to go back.
If, however, the user has provided all the required inputs, then we send
the e-mail with his information embedded.

• One interesting thing to note is that we can send the e-mail from any
address we like just by providing it as an argument to the mail function.
It’s just that easy to spoof an e-mail address because e-mail was never
designed with security in mind. If we take the time to inspect the actual
headers of the e-mail, we’ll find that it originated from the CS50 Cloud’s
servers, so it is possible to do a bit of spam fighting if we really want
to. We will advise you not to actually make use of this e-mail address
spoofing, as David got into a bit of trouble doing once because he failed to
remove his automatic signature “djm” while impersonating a friend whose
initials, needless to say, aren’t “djm.”

4 More with Forms and PHP (34:00–46:00)

4.1 froshims4.php

• froshims4.php introduces an interesting technique; it submits to itself:

<?
/***
* froshims4.php

4

Computer Science 50
Fall 2010
Scribe Notes

Week 9 Monday: November 1, 2010
Andrew Sellergren

*
* Computer Science 50
* David J. Malan
*
* Implements a registration form for Frosh IMs. Submits to itself.
**/

// if form was actually submitted, check for error
if ($_POST["action"])
{

if ($_POST["name"] == "" || $_POST["gender"] == "" || $_POST["dorm"] == "")
$error = TRUE;

}
?>

<!DOCTYPE html>

<html>
<head>
<title>Frosh IMs</title>

</head>
<body>
<div style="text-align: center">
<h1>Register for Frosh IMs</h1>
<? if ($error): ?>
<div style="color: red">You must fill out the form!</div>

<? endif ?>

<form action="froshims4.php" method="post">
<table style="border: 0; margin-left: auto;

margin-right: auto; text-align: left">
<tr>
<td>Name:</td>
<td><input name="name" type="text"></td>

</tr>
<tr>
<td>Captain:</td>
<td><input name="captain" type="checkbox"></td>

</tr>
<tr>
<td>Gender:</td>
<td><input name="gender" type="radio" value="F"> F

<input name="gender" type="radio" value="M"> M</td>
</tr>
<tr>
<td>Dorm:</td>

5

Computer Science 50
Fall 2010
Scribe Notes

Week 9 Monday: November 1, 2010
Andrew Sellergren

<td>
<select name="dorm" size="1">
<option value=""></option>
<option value="Apley Court">Apley Court</option>
<option value="Canaday">Canaday</option>
<option value="Grays">Grays</option>
<option value="Greenough">Greenough</option>
<option value="Hollis">Hollis</option>
<option value="Holworthy">Holworthy</option>
<option value="Hurlbut">Hurlbut</option>
<option value="Lionel">Lionel</option>
<option value="Matthews">Matthews</option>
<option value="Mower">Mower</option>
<option value="Pennypacker">Pennypacker</option>
<option value="Stoughton">Stoughton</option>
<option value="Straus">Straus</option>
<option value="Thayer">Thayer</option>
<option value="Weld">Weld</option>
<option value="Wigglesworth">Wigglesworth</option>

</select>
</td>

</tr>
</table>

<input name="action" type="submit" value="Register!">

</form>
</div>

</body>
</html>

4.2 froshims5.php

• froshims5.php makes use of submitting to itself as a way of error-checking:

<?
/***
* froshims5.php
*
* Computer Science 50
* David J. Malan
*
* Implements a registration form for Frosh IMs. Submits to itself.
* Pre-populates name field upon error.
**/

// if form was actually submitted, check for error

6

Computer Science 50
Fall 2010
Scribe Notes

Week 9 Monday: November 1, 2010
Andrew Sellergren

if ($_POST["action"])
{

if ($_POST["name"] == "" || $_POST["gender"] == "" || $_POST["dorm"] == "")
$error = TRUE;

}
?>

<!DOCTYPE html>

<html>
<head>
<title>Frosh IMs</title>

</head>
<body>
<div style="text-align: center">
<h1>Register for Frosh IMs</h1>
<? if ($error): ?>
<div style="color: red">You must fill out the form!</div>

<? endif ?>

<form action="froshims5.php" method="post">
<table style="border: 0;

margin-left: auto; margin-right: auto; text-align: left">
<tr>
<td>Name:</td>
<td><input name="name" type="text"

value="<?= htmlspecialchars($_POST["name"]) ?>"></td>
</tr>
<tr>
<td>Captain:</td>
<td><input name="captain" type="checkbox"></td>

</tr>
<tr>
<td>Gender:</td>
<td><input name="gender" type="radio" value="F"> F

<input name="gender" type="radio" value="M"> M</td>
</tr>
<tr>
<td>Dorm:</td>
<td>
<select name="dorm" size="1">
<option value=""></option>
<option value="Apley Court">Apley Court</option>
<option value="Canaday">Canaday</option>
<option value="Grays">Grays</option>
<option value="Greenough">Greenough</option>

7

Computer Science 50
Fall 2010
Scribe Notes

Week 9 Monday: November 1, 2010
Andrew Sellergren

<option value="Hollis">Hollis</option>
<option value="Holworthy">Holworthy</option>
<option value="Hurlbut">Hurlbut</option>
<option value="Lionel">Lionel</option>
<option value="Matthews">Matthews</option>
<option value="Mower">Mower</option>
<option value="Pennypacker">Pennypacker</option>
<option value="Stoughton">Stoughton</option>
<option value="Straus">Straus</option>
<option value="Thayer">Thayer</option>
<option value="Weld">Weld</option>
<option value="Wigglesworth">Wigglesworth</option>

</select>
</td>

</tr>
</table>

<input name="action" type="submit" value="Register!">

</form>
</div>

</body>
</html>

The value in submitting a form to itself, as we’ve done by specifying
froshims5.php as the value of the action attribute here, is that we can
keep the form’s inputs populated if the user makes a mistake in entering
them. Because the form submits to itself, we can move the logic that
checks for correct inputs onto the same page as the form itself. Then, if
the user submits faulty data, we can display an error message on the form
page and not lose the user’s inputs in moving from one page to another.

• More specifically, if there’s an error in the user’s form, we set a variable
named $error to TRUE. Later in our code, we check the value of that
variable:

<? if ($error): ?>
<div style="color: red">You must fill out the form!</div>

<? endif ?>

Notice that we can commingle PHP and HTML code relatively seamlessly.
In this case, if $error evaluates to true, we’ll display an error message in
red.

4.3 froshims6.php

• In froshims6.php, we take a stab at using PHP to help automatically
generate some of our HTML form:

8

Computer Science 50
Fall 2010
Scribe Notes

Week 9 Monday: November 1, 2010
Andrew Sellergren

<?
/***
* froshims6.php
*
* Computer Science 50
* David J. Malan
*
* Implements a registration form for Frosh IMs. Submits to itself.
* Generates list of dorms via an array.
**/

// array of dorms
$DORMS = array(
"Apley Court",
"Canaday",
"Grays",
"Greenough",
"Hollis",
"Holworthy",
"Hurlbut",
"Lionel",
"Matthews",
"Mower",
"Pennypacker",
"Stoughton",
"Straus",
"Thayer",
"Weld",
"Wigglesworth"

);

// if form was actually submitted, check for error
if ($_POST["action"])
{

if ($_POST["name"] == "" || $_POST["gender"] == "" || $_POST["dorm"] == "")
$error = TRUE;

}
?>

<!DOCTYPE html>

<html>
<head>
<title>Frosh IMs</title>

</head>

9

Computer Science 50
Fall 2010
Scribe Notes

Week 9 Monday: November 1, 2010
Andrew Sellergren

<body>
<div style="text-algin: center">
<h1>Register for Frosh IMs</h1>
<? if ($error): ?>
<div style="color: red;">You must fill out the form!</div>

<? endif ?>

<form action="froshims6.php" method="post">
<table style="border: 0;

margin-left: auto; margin-right: auto; text-align: left">
<tr>
<td>Name:</td>
<td><input name="name" type="text"

value="<?= htmlspecialchars($_POST["name"]) ?>"></td>
</tr>
<tr>
<td>Captain:</td>
<td><input name="captain" type="checkbox"></td>

</tr>
<tr>
<td>Gender:</td>
<td><input name="gender" type="radio" value="F"> F

<input name="gender" type="radio" value="M"> M</td>
</tr>
<tr>
<td>Dorm:</td>
<td>
<select name="dorm" size="1">
<option value=""></option>
<? foreach ($DORMS as $dorm): ?>
<option value="<?= $dorm ?>"><?= $dorm ?></option>

<? endforeach ?>
</select>

</td>
</tr>

</table>

<input name="action" type="submit" value="Register!">

</form>
</div>

</body>
</html>

The $DORMS variable is declared using the array function and is initialized
with a series of strings denoting the names of the freshman dorms on
Harvard’s campus. Using this array, we can create our select element

10

Computer Science 50
Fall 2010
Scribe Notes

Week 9 Monday: November 1, 2010
Andrew Sellergren

without having to hardcode all of the option tags. As before, we write
the open tag for the select element and specify the first option as blank
so that it will be the default:

<select name="dorm" size="1">
<option value=""></option>

After that, though, we enter PHP mode in what looks to be a loop:

<? foreach ($DORMS as $dorm): ?>
<option value="<?= $dorm ?>"><?= $dorm ?></option>

<? endforeach ?>

Using the foreach syntax, we loop through and grab each value of the
$DORMS array and assign it to the temporary variable $dorm. Then we
print out $dorm as both the value attribute and the display name of the
option itself. You can imagine that if HarvardFML is implemented in
PHP, the foreach loop could be used to print out all of the posts for a
particular date.

• The actual HTML output of froshims6.php is actually the same as our
previous versions, but the back-end source code is a little cleaner thanks
to PHP.

5 Database-driven Websites (46:00–55:00)

• Before we examine the most compelling version of our freshman intramu-
rals registration page, let’s talk about the database behind it. A database
is a storage platform that organizes persistent data into tables. You can
think of a database and its tables as an Excel file and the spreadsheets
within it, respectively.

• Database engines abound. There are Microsoft Access, MySQL, Oracle,
and Microsoft SQL Server just to name a few. We’ll be using MySQL
because it’s free and open-source (i.e. the source code is publicly available
and modifiable). Facebook is one of MySQL’s largest proponents and has
shown that MySQL can be scalable enough to run enterprise applications.
MySQL is generally very popular and is widely supported by domain hosts.

• To interact with our database server, we’ll be using phpMyAdmin, another
excellent piece of free, open-source software. We’ve set up an instance of
it at cs50.net/phpmyadmin.

• Intuitively, we can organize our freshman registration information into a
single table called “registrants” that contains columns for name, gender,
dorm, and captainship. For performance reasons, MySQL requires strict
data typing, so we need to decide ahead of time what data types these

11

http://cs50.net/phpmyadmin

Computer Science 50
Fall 2010
Scribe Notes

Week 9 Monday: November 1, 2010
Andrew Sellergren

four columns will have. Let’s go with VARCHAR (a type of string which can
have variable length) for name, with a maximum length of 255, BOOLEAN
for captain, VARCHAR for gender (although there are many different data
types that could work here), and VARCHAR for dorm, with a maximum
length of 255. When we click the Save button, the table will be created,
but we’ll also see the actual SQL statement which was executed. SQL, by
the way, stands for structured query language.

5.1 register8.php

• Let’s take a look at how we will interact with our newly created database
using PHP in register8.php:

<?
/***
* register8.php
*
* Computer Science 50
* David J. Malan
*
* Implements a registration form for Frosh IMs. Records registration
* in database. Redirects user to froshims8.php upon error.
**/

// validate submission
if ($_POST["name"] == "" || $_POST["gender"] == "" || $_POST["dorm"] == "")
{

header("Location: http://cloud.cs50.net/" .
"~cs50/lectures/8/src/froshims/froshims8.php");

exit;
}

// connect to database
mysql_connect("localhost", "malan", "12345");
mysql_select_db("malan_lecture");

// scrub inputs
$name = mysql_real_escape_string($_POST["name"]);
if ($_POST["captain"])

$captain = 1;
else

$captain = 0;
$gender = mysql_real_escape_string($_POST["gender"]);
$dorm = mysql_real_escape_string($_POST["dorm"]);

// prepare query

12

Computer Science 50
Fall 2010
Scribe Notes

Week 9 Monday: November 1, 2010
Andrew Sellergren

$sql = "INSERT INTO registrants (name, captain, gender, dorm)
VALUES(’$name’, $captain, ’$gender’, ’$dorm’)";

// execute query
mysql_query($sql);

?>

<!DOCTYPE html>

<html>
<head>
<title>Frosh IMs</title>

</head>
<body>
You are registered! (Really.)

</body>
</html>

First, we connect to the database server by providing our login credentials
to the mysql_connect function. Second, because there will be multiple
databases on this server, we must select ours by calling the mysql_select_db
function. Third, we need to scrub the data that the user has provided.
That is, because there are a lot of ways that malicious users can sabotage
our database if we blindly pass their inputs to the database server, we
need to go through a process of cleaning those inputs. We do this with
the mysql_real_escape_string function. Fourth, we will create a SQL
query and execute it using the mysql_query function. Assuming all of
these steps are successful, the user’s data will be inserted into our MySQL
database.

• If we navigate to froshims8.php, which is nearly identical to earlier ver-
sions of the form, and enter in our data, we see a message indicating that
we’ve successfully registered. The real test comes, however, when we check
the contents of our database using phpMyAdmin. And ta-da, it’s there!

6 More on Problem Set 7 (55:00–58:00)

• David has fixed the Big Board so that it properly displays the portfolio
rankings and the profit percentages! If you’re feeling particularly enter-
prising, know that you can make a whole slew of money by exploiting
two weaknesses of our system: first, our stock price data is delayed by 15
minutes and second, your purchases won’t affect the stock prices. May
the best hacker win!

13

Computer Science 50
Fall 2010
Scribe Notes

Week 9 Monday: November 1, 2010
Andrew Sellergren

7 PHP and MySQL (58:00–72:00)

• SQL, or structured query language, isn’t exactly a programming language.
Rather, it is a language that enables us to get at the data that is stored
in databases. For our purposes, SQL boils down to four basic commands:

– INSERT

– SELECT

– UPDATE

– DELETE

We’ve actually already used the INSERT command in register8.php.
We’ll peel back the layers on all of these commands shortly.

• Interfacing with databases via SQL is a capability of almost all modern
programming languages, not just PHP.

7.1 register8.php (cont’d)

• In register8.php, we connected to our MySQL database using a function
called mysql_connect which took three arguments: the IP address of the
server, the username, and the password.1

• mysql_real_escape_string is a function that we called in order to san-
itize the user’s inputs before inserting them into our database. This is to
prevent a so-called SQL injection attack,2 whereby a malicious user could
actually provide as a form input a SQL command that would then be
executed and would sabotage our database.

• To set the $captain variable, we treat $_POST["captain"] as a boolean
value. Recall that if the checkbox for captainship was checked, this value
would be passed as “on”. If it wasn’t checked, the value wouldn’t be
passed at all. So by testing if $_POST["captain"] is set, we’re finding
out if the checkbox was checked and if so, setting the $captain variable
to 1, or true.

• As an aside, notice that we haven’t had to declare variables in PHP. We
can create new variables on the fly simply by assigning them a value and
not even specifying their type.

• We prepare our SQL statement as follows:

// prepare query
$sql = "INSERT INTO registrants (name, captain, gender, dorm)
VALUES(’$name’, $captain, ’$gender’, ’$dorm’)";

1By the way, mysql.localdomain is a made-up IP address that is accessible only internally
on the Cloud since we don’t want outsiders to be able to connect to it.

2Everyone could learn a lesson from Little Bobby Tables’s mom.

14

http://xkcd.com/327/

Computer Science 50
Fall 2010
Scribe Notes

Week 9 Monday: November 1, 2010
Andrew Sellergren

After specifying what table to insert the data into (registrants), we give
a list of column names in parentheses separated by commas. This list of
columns isn’t entirely necessary, but it allows us to omit certain columns
in the table if we don’t want to insert any data into them. In this case,
we’re being explicit by naming all of the columns.

• The VALUES string is then populated with the user’s santized inputs. In
PHP, variables that we specify inside double quotes will automatically be
replaced with their values at runtime. SQL also requires that string values
be surrounded by single quotes, so this is why only $captain is not.

• The final value of $sql will look something like this:

INSERT INTO registrants
(name, captain, gender, dorm)
VALUES(’David Malan’, 1, ’M’, ’Matthews’);

We can actually copy and paste this query into phpMyAdmin’s SQL tab
and execute it directly against our database to verify that it works.

7.2 registrants.php

• We have one more script to look at which allows us to examine the data
in our database:

<?
// connect to database
mysql_connect("mysql.localdomain", "malan", "12345");
mysql_select_db("malan_lecture");

// prepare query
$sql = "SELECT * FROM registrants";

// execute query
$result = mysql_query($sql);

?>

<!DOCTYPE html>

<html>
<head>
<title>Frosh IMs</title>

</head>
<body>

15

Computer Science 50
Fall 2010
Scribe Notes

Week 9 Monday: November 1, 2010
Andrew Sellergren

<?
// iterate over results
while ($row = mysql_fetch_array($result))
{

print("");
print(htmlspecialchars($row["name"]));
print("");

}
?>

</body>

</html>

The while loop is iteratively grabbing one row at a time from our SQL
query result until there are no rows left, in which case mysql_fetch_assoc()
will return false.

16

	Announcements and Demos (0:00--10:00)
	Problem Set 7 (10:00--19:00)
	From Last Time (19:00--34:00)
	More with Forms and PHP (34:00--46:00)
	froshims4.php
	froshims5.php
	froshims6.php

	Database-driven Websites (46:00--55:00)
	register8.php

	More on Problem Set 7 (55:00--58:00)
	PHP and MySQL (58:00--72:00)
	register8.php (cont'd)
	registrants.php

