
Computer Science 50
Fall 2010
Scribe Notes

Week 9 Wednesday: November 3, 2010
Andrew Sellergren

Contents

1 Announcements and Demos (0:00–10:00) 2

2 FAQs (10:00–20:00) 2
2.1 HTTP Errors . 2
2.2 Sessions . 3
2.3 Interpolation . 3
2.4 PHP Documentation . 3

3 Cool Demos (20:00–34:00) 4
3.1 HTML5 . 4
3.2 JavaScript . 4
3.3 PHP . 4

4 JavaScript (34:00–74:00) 5
4.1 form1.html . 5
4.2 dump.php . 6
4.3 form2.html . 7
4.4 The DOM . 9
4.5 form2.html (cont’d) . 10
4.6 form3.html . 10
4.7 form4.html . 12
4.8 Ajax . 14

4.8.1 ajax1.html . 14
4.8.2 ajax3.html . 17

1

Computer Science 50
Fall 2010
Scribe Notes

Week 9 Wednesday: November 3, 2010
Andrew Sellergren

1 Announcements and Demos (0:00–10:00)

• This is CS50.

• 0 new handouts.

• Check out a fellow classmate’s homepage which puts up a good fight for
the most annoying website in the world!

• According to David McCandless, who recently gave a TED talk on data
visualization, most Facebook breakups take place after Valentine’s Day
and during Spring Break. We mention this because data visualization will
be an important part of Problem Set 8 as we make use of the Google
Charts API. Also check out HarvardEnergy which dynamically generates
charts using JavaScript after syncing its data with a database using PHP
and MySQL. JavaScript’s model is based on events (e.g. clicking and
dragging) triggered by the user and listener functions which respond to
them.

• Realize that for Problem Set 7 when we say that your code must be valid,
we’re referring to your HTML, not your PHP, passing the W3C standards
test. To test it out, copy and paste the HTML output of your application
into the W3C Validator. Because your pages require validation, you won’t
be able to simply point the W3C Validator to your URLs. You can also
avail yourself of the Web Developer Firefox plugin which will allow you to
locally validate your HTML.

2 FAQs (10:00–20:00)

2.1 HTTP Errors

• If you were unlucky enough to visit Google Calendar this morning during
its unplanned downtime, you might’ve seen a page that said “404 Not
Found.” The 404 is an HTTP error code which generally indicates that
the file that was requested can’t be found on the server. In this case, it
was probably some other configuration error that caused Google Calendar
to go down, but in the context of your own website, it might mean that
you misspelled the name of the page you were hoping to visit.

• Here’s a short, non-exhaustive list of HTTP errors:

– 401 - unauthorized

– 403 - forbidden

– 404 - not found

– 500 - internal server error

2

https://cloud.cs50.net/~vytan/
http://www.ted.com/talks/david_mccandless_the_beauty_of_data_visualization.html
http://energy.cs50.net/
http://validator.w3.org

Computer Science 50
Fall 2010
Scribe Notes

Week 9 Wednesday: November 3, 2010
Andrew Sellergren

If a site requires a username and password and you’ve provided the wrong
ones, you might be met with a 401 error. 403 usually indicates an error
with file permissions, i.e. the file has not been chmod’ed properly. 500 is
usually indicative of one of a variety of more serious server configuration
errors.

2.2 Sessions

• HTTP sessions are a handy tool for persisting data across a user’s time
while logged in to your website. You can store whatever data you want
in the $_SESSION superglobal variable and that data will be available on
the server side as long as the session has not expired, for example when
the browser window is closed.

• The distribution code for Problem Set 8 makes use of the $_SESSION
variable to store the user ID of the person who just logged in.

• How does the web server know what data to populate $_SESSION with?
Generally, it relies on the user’s cookie and then looks up the correspond-
ing temporary session data stored on the server. This is exactly the infor-
mation that is being stolen when a session is hijacked by Firesheep. You
might have noticed that CS50 is now using SSL exclusively for logged-in
pages which will thwart this kind of attack.

2.3 Interpolation

• One gotcha with interpolation in PHP (i.e. variables enclosed in double
quotes will automatically be substituted with their values) pertains to
arrays. To use interpolation with arrays, you must enclose the array name
in curly braces like so:

$sql = "SELECT * FROM users WHERE uid = {$_SESSION["uid"]}";

You could also use the concatenation operator to get around this interpo-
lation problem:

$sql = "SELECT * FROM users WHERE uid = " . $_SESSION["uid"];

2.4 PHP Documentation

• PHP’s documentation available at php.net will be invaluable to you as
you learn the language. In particular, the function reference pages are
extremely useful. They will provide you with function prototypes that
specify return and argument types (even though PHP is not strictly typed)
as well as example code and snippets from users.

3

http://php.net

Computer Science 50
Fall 2010
Scribe Notes

Week 9 Wednesday: November 3, 2010
Andrew Sellergren

3 Cool Demos (20:00–34:00)

3.1 HTML5

• One of the intents of HTML5 is to preempt the need for browser plugins
like Flash in order to play movies and games. Check out these HTML5
demos to see what is possible.

3.2 JavaScript

• Also check out Rumpetroll, a chat room implemented entirely in JavaScript!1

• Finally, as a teaser for where we’re going, check out the WebGL Aquarium,
also implemented entirely in JavaScript.

3.3 PHP

• This demo is perhaps only impressive to us because we just finished writing
dozens of lines of code in order to implement a spellchecker in C. Take a
look at how easy it is to implement the load function in PHP:

$hashtable = array();

function load($dict)
{

for (file($dict) as $word)
$hashtable[$word] = TRUE;

}

The array function in PHP declares a so-called associative array which is
really just an implementation of a hash table.

• check is just as easy to implement:

function check($word)
{

if ($hashtable[$word])
return TRUE;

else
return FALSE;

}

• The downside of using PHP for our spellchecker is that because PHP is an
interpreted language rather than a compiled language like C (i.e. source
code is translated into binary at runtime for PHP as opposed to before

1The choice of avatars is somewhat unfortunate. Or hilarious, depending on how you look
at it.

4

http://www.apple.com/html5/
http://www.apple.com/html5/
http://rumpetroll.com/
http://webglsamples.googlecode.com/hg/aquarium/aquarium.html

Computer Science 50
Fall 2010
Scribe Notes

Week 9 Wednesday: November 3, 2010
Andrew Sellergren

runtime for C), the runtime will be much longer. However, the tradeoff
is that development time is much shorter. If we run the staff solution for
Problem Set 6, implemented in C, against a PHP version of speller while
checking kjv.txt, we get runtimes of about 0.5 seconds and 2 seconds,
respectively.

• For your own edification, check out the entirety of the PHP implementa-
tion of speller here. Note that at the top of speller there is the following
line of code:

#!/usr/bin/php

This line of code allows us to drop the .php extension from the file and
make the file itself executable. Whereas normally, we’d have to run a
command like /usr/bin/php speller.php so that the operating system
knows what program to execute our file with, this line of code called a
shebang shortcuts this process so that we can simply run speller from the
command line. In the context of web development, the web server makes
the assumption that .php files should be passed to the PHP interpreter
before being presented to the user.

4 JavaScript (34:00–74:00)

• The script HTML tag is not one we’ve had occasion to examine so far.
Generally speaking, a script refers to an program coded in an interpreted
language. Thus, the script tag tells the HTML interpreter that a pro-
gram is being introduced. Although programs in other languages are pos-
sible, the script tag usually introduces a JavaScript program.

• In years gone by, JavaScript was really only capable of annoying things
like popping open alert windows. Nowadays, it has become incredibly
powerful as a programming language in its own right. On HarvardEvents,
for example, JavaScript is used to display a course information dropdown
when the plus icon is clicked next to the course name. This drop down
is almost instantaneous because the data has already been retrieved from
the server and thus there is no need for a new HTTP request to be made.

4.1 form1.html

• form1.html demonstrates a standard HTML login form that has no client-
side validation:

<!--

form1.html

5

https://www.cs50.net/lectures/9/src/mispellings/

Computer Science 50
Fall 2010
Scribe Notes

Week 9 Wednesday: November 3, 2010
Andrew Sellergren

A form without client-side validation.

Computer Science 50
David J. Malan

-->

<!DOCTYPE html>

<html>
<head>
<title>form1</title>

</head>
<body>
<form action="dump.php" method="get">
Email: <input name="email" type="text">

Password: <input name="password1" type="password">

Password (again): <input name="password2" type="password">

I agree to the terms and conditions: <input name="agreement" type="checkbox">

<input type="submit" value="Submit">

</form>
</body>

</html>

That is, a user can input almost anything as his e-mail and password and
the form will submit to the back end. Of course, the back end might have
some validation built in so that if a malformed e-mail address is passed,
the form submission will fail and the user will be bounced back to the
input page. It would be nice, however, if instead of going through the
trouble of clicking Submit and waiting for the HTTP response indicating
a submission error, the user could be warned that his inputs are wrong.
This is where JavaScript comes in.

4.2 dump.php

• Incidentally, dump.php, the back end for this form, does nothing but spit
out the contents of the $_GET variable so that we can do some debugging:

<!DOCTYPE html>
<html>
<head>
<title>dump</title>

6

Computer Science 50
Fall 2010
Scribe Notes

Week 9 Wednesday: November 3, 2010
Andrew Sellergren

</head>
<body>
<pre><? print_r($_GET); ?></pre>

</body>
</html>

The pre HTML tag tells the browser to print everything inside it as is,
i.e. without formatting. The print_r function stands for “print recursive”
and will run through hierarchical objects like arrays and dump all their
contents.

4.3 form2.html

• form2.html introduces the client-side validation that we just discussed:

<!--

form2.html

A form with client-side validation.

Computer Science 50
David J. Malan

-->

<!DOCTYPE html>

<html>
<head>
<script type="text/javascript">
// <![CDATA[

function validate()
{

if (document.forms.registration.email.value == "")
{

alert("You must provide an email adddress.");
return false;

}
else if (document.forms.registration.password1.value == "")
{

alert("You must provide a password.");
return false;

}
else if (document.forms.registration.password1.value !=

7

Computer Science 50
Fall 2010
Scribe Notes

Week 9 Wednesday: November 3, 2010
Andrew Sellergren

document.forms.registration.password2.value)
{

alert("You must provide the same password twice.");
return false;

}
else if (!document.forms.registration.agreement.checked)
{

alert("You must agree to our terms and conditions.");
return false;

}
return true;

}

//]]>
</script>
<title>form2</title>

</head>
<body>
<form action="dump.php" method="get" name="registration"

onsubmit="return validate();">
Email: <input name="email" type="text">

Password: <input name="password1" type="password">

Password (again): <input name="password2" type="password">

I agree to the terms and conditions:
<input name="agreement" type="checkbox">

<input type="submit" value="Submit">

</form>
</body>

</html>

Here we see that a new attribute of the form tag is defined: onsubmit. As
you might guess, it controls what happens when the form is actually sub-
mitted. In this case, we’re calling a JavaScript function named validate.
The onsubmit attribute, according to the W3C’s specification of HTML,
can take actual JavaScript code as its value. If this code evaluates to true,
then the form will be submitted. Otherwise, the form will not submit. In
this case, we’re relying on the validate function to evaluate to true if the
form inputs are valid and to evaluate to false otherwise.

• At the top, in the head element, we have our script tag.2 Right after
2Incidentally, the script tag can be placed elsewhere on the page other than in the head

element. There are good reasons one might do so and we’ll see examples of it later in the

8

Computer Science 50
Fall 2010
Scribe Notes

Week 9 Wednesday: November 3, 2010
Andrew Sellergren

the open tag, we have the following sequence of characters:

// <![CDATA[

The <![CDATA[tells the browser is that the lines which follow are character
data and shouldn’t be parsed as HTML. In this way, characters like < which
are used in the JavaScript won’t prevent our webpage from validating. The
double slash in front tells the JavaScript interpreter not to interpret that
line as JavaScript.

• The first if condition in validate checks for a blank e-mail field. We do
this by accessing a global object named document that is provided to us
natively in JavaScript. document is actually a kind of object or struct
which contains the entire hierarchy of the page’s content.

4.4 The DOM

• This hierarchy of a page’s content encapsulated in the document object is
called the DOM, or document object model, and can be visualized like so:

<!DOCTYPE html>
<html>
<head>
<title>My title</title>

</head>
<body>
My link
<h1>My header</h1>

</body>
</html>

course.

9

Computer Science 50
Fall 2010
Scribe Notes

Week 9 Wednesday: November 3, 2010
Andrew Sellergren

As you can see, because we’ve been careful to close tags in the order
that we open them, certain tags will become the children of others. For
example, the title element is a child of the head element.

4.5 form2.html (cont’d)

• Within document, we access forms followed by the registration form in
particular. Notice that registration corresponds to the value we gave
to the name attribute of our form. Finally we access the value attribute
of the email field. If this value is the empty string, then we call a built-in
function called alert which pops up a window. After this window pops
up, we return false, which is important to ensure that the form doesn’t
actually submit.

• In the next conditions, we check for a blank password field and for non-
matching password fields. Then we access the checked property of the
checkbox field to make sure that it has been clicked.

4.6 form3.html

• form3.html improves upon form2.html by simplifying the validation code:

<!--

form3.html

A form with client-side validation demonstrating "this" keyword.

Computer Science 50
David J. Malan

-->

<!DOCTYPE html>

<html>
<head>
<script type="text/javascript">
// <![CDATA[

function validate(f)
{

if (f.email.value == "")
{

alert("You must provide an email adddress.");
return false;

10

Computer Science 50
Fall 2010
Scribe Notes

Week 9 Wednesday: November 3, 2010
Andrew Sellergren

}
else if (f.password1.value == "")
{

alert("You must provide a password.");
return false;

}
else if (f.password1.value != f.password2.value)
{

alert("You must provide the same password twice.");
return false;

}
else if (!f.agreement.checked)
{

alert("You must agree to our terms and conditions.");
return false;

}
return true;

}

//]]>
</script>
<title>form3</title>

</head>
<body>
<form action="dump.php" method="get"

onsubmit="return validate(this);">
Email: <input name="email" type="text">

Password: <input name="password1" type="password">

Password (again): <input name="password2" type="password">

I agree to the terms and conditions:
<input name="agreement" type="checkbox">

<input type="submit" value="Submit">

</form>
</body>

</html>

This incarnation of validate takes a single argument instead of none.
The argument that is passed to validate is the actual form object itself.
We achieve this by writing validate(this) in the onsubmit attribute.
The value of this will change from context to context. Here, it stands for
the form object.

11

Computer Science 50
Fall 2010
Scribe Notes

Week 9 Wednesday: November 3, 2010
Andrew Sellergren

4.7 form4.html

• form4.html demonstrates a clever use of the disabled property:

<!--

form4.html

A form with client-side validation demonstrating disabled property.

Computer Science 50
David J. Malan

-->

<!DOCTYPE html>

<html>
<head>
<script type="text/javascript">
// <![CDATA[

function toggle()
{

if (document.forms.registration.button.disabled)
document.forms.registration.button.disabled = false;

else
document.forms.registration.button.disabled = true;

}

function validate()
{

if (document.forms.registration.email.value == "")
{

alert("You must provide an email adddress.");
return false;

}
else if (document.forms.registration.password1.value == "")
{

alert("You must provide a password.");
return false;

}
else if (document.forms.registration.password1.value !=

document.forms.registration.password2.value)
{

12

Computer Science 50
Fall 2010
Scribe Notes

Week 9 Wednesday: November 3, 2010
Andrew Sellergren

alert("You must provide the same password twice.");
return false;

}
else if (!document.forms.registration.agreement.checked)
{

alert("You must agree to our terms and conditions.");
return false;

}
return true;

}

//]]>
</script>
<title>form4</title>

</head>
<body>
<form action="dump.php" method="get"

name="registration" onsubmit="return validate();">
Email: <input name="email" type="text">

Password: <input name="password1" type="password">

Password (again): <input name="password2" type="password">

I agree to the terms and conditions:
<input name="agreement" onclick="toggle();" type="checkbox">

<input disabled="disabled" name="button" type="submit" value="Submit">

</form>
</body>

</html>

In this version of our login form, the Submit button isn’t clickable until
the terms and conditions checkbox has been checked. We achieve this
by initially setting the disabled attribute of the checkbox to the value
disabled.3 Then, we assign a JavaScript function toggle to be the lis-
tener for the click event (via the onclick attribute) on the terms and con-
ditions checkbox. Whenever the checkbox is checked, the toggle function
will be called. If the checkbox is checked, the disabled attribute of the
Submit button will be set to false.

• So why bother with server-side validation if client-side validation is so sim-
ple and elegant? As it turns out, users can disable JavaScript in almost
every major browser with a few clicks of the mouse. If a malicious user
were to do this, he could get past all your client-side validation. Thus if

3Yes, it’s a stupid convention.

13

Computer Science 50
Fall 2010
Scribe Notes

Week 9 Wednesday: November 3, 2010
Andrew Sellergren

you have no server-side validation, he could have a field day with your
form. Just as importantly, not every browser fully supports JavaScript—
the BlackBerry browser being a good example. When you’re developing
a website, then, you need to consider what users you might be alienat-
ing if you choose to implement functionality which absolutely requires
JavaScript.

4.8 Ajax

• As we said before, event listeners are at the heart of JavaScript’s power.
Take Google Maps, for example. The click and drag functionality of the
map itself was revolutionary only a few years ago. What makes this func-
tionality possible is listeners for the drag event which then spawn HTTP
requests to grab more tiles, the small squares that piece together to make
the whole map. If you drag fast enough, you can see that before these
tiles are downloaded, the map is at least partly gray. And if you inspect
the map in Firebug, you can see that dozens of HTTP requests are made
each time you click and drag. Spawning HTTP requests from JavaScript
events is the core of Ajax technology.

4.8.1 ajax1.html

• In ajax1.html, we leverage Ajax in order to create a stock lookup page
that never actually refreshes:

<!--

ajax1.html

Gets stock quote from quote1.php via Ajax,
displaying result with alert().

Computer Science 50
David J. Malan

-->

<!DOCTYPE html>

<html>
<head>
<script type="text/javascript">
// <![CDATA[

// an XMLHttpRequest

14

Computer Science 50
Fall 2010
Scribe Notes

Week 9 Wednesday: November 3, 2010
Andrew Sellergren

var xhr = null;

/*
* void
* quote()
*
* Gets a quote.
*/
function quote()
{

// instantiate XMLHttpRequest object
try
{

xhr = new XMLHttpRequest();
}
catch (e)
{

xhr = new ActiveXObject("Microsoft.XMLHTTP");
}

// handle old browsers
if (xhr == null)
{

alert("Ajax not supported by your browser!");
return;

}

// construct URL
var url = "quote1.php?symbol=" +

document.getElementById("symbol").value;

// get quote
xhr.onreadystatechange = handler;
xhr.open("GET", url, true);
xhr.send(null);

}

/*
* void
* handler()
*
* Handles the Ajax response.
*/
function handler()
{

15

Computer Science 50
Fall 2010
Scribe Notes

Week 9 Wednesday: November 3, 2010
Andrew Sellergren

// only handle loaded requests
if (xhr.readyState == 4)
{

// display response if possible
if (xhr.status == 200)

alert(xhr.responseText);
else

alert("Error with Ajax call!");
}

}

//]]>
</script>
<title>ajax1</title>

</head>
<body>
<form onsubmit="quote(); return false;">
Symbol: <input id="symbol" type="text">

<input type="submit" value="Get Quote">

</form>
</body>

</html>

Down at the bottom, we see that there’s very little HTML that’s needed
to implement the actual form. One thing to notice is that we’ve given
the symbol input an id attribute to uniquely identify it. In order for our
page to validate, we need to make sure this attribute actually exists, but
we don’t have to put a real filename there. Clearly if this attribute is
blank, the form isn’t actually going to submit anywhere. Instead, we have
a JavaScript function called quote, specified in the onsubmit attribute,
which is going to look up the stock price. After this function executes,
we’re going to return false so that the form doesn’t actually submit.

• Ajax is a technology which allows browsers to make additional requests to
the server after the web page has already loaded. Unfortunately, browsers
never agreed upon how to implement Ajax, so we have to use some muddy
syntax in order to ensure cross-browser compatibility. First, we’re initial-
izing a global variable named xhr by trying to create a new XMLHttpRe-
quest object, the object which implements the magic of Ajax. Unfortu-
nately, this won’t work in Internet Explorer because Microsoft decided
that their particular flavor of this object would be called an ActiveXOb-
ject. For that reason, we use the try-catch syntax, which attempts to
execute the try block and only executes the catch block if the try block
fails for some reason.

• After we’ve initialized xhr, we check for null just in case the user is run-

16

Computer Science 50
Fall 2010
Scribe Notes

Week 9 Wednesday: November 3, 2010
Andrew Sellergren

ning a browser that doesn’t support Ajax. Next we’re dynamically cre-
ating a URL4 which we’re going to request from the server. In a GET
variable named symbol, we’re appending the value the user has entered
into the text box. We are accessing this value by invoking a method called
getElementById, which, as you might’ve guessed, searches for an HTML
element whose id attribute we specify. In this case, we’ve given the symbol
input an id of symbol, so that’s what we’re searching for.

• The three lines at the bottom of quote are the ones which actually retrieve
the stock quote. The last two lines actually open a connection to the server
and send the data. If you wanted to use the POST method, you would
specify POST as the first argument to open and you would pass the actual
data as the argument to send, rather than null. By passing true as the
third argument to open, we specify that the request will be asynchronous;
that is, our JavaScript program won’t wait for the request to return before
it continues executing the rest of our code. In computer-science speak, this
is a non-blocking call.

• The line of code that accesses the onreadystatechange property of xhr
tells it to call a function named handler when it receives a response for its
HTTP request. This demonstrates that functions in JavaScript, because
they are implemented as pointers, can be passed around just like any other
object or variable.

• Within the handler function, we are checking two properties of the xhr
object: readyState and status. First, we check readyState to find if
the request has been sent successfully (i.e. 4); second, we check status,
to see if the server has returned a response of OK (i.e. 200). If both of
those checks are passed, then we access the responseText of the object
and display it via an alert window.

• So let’s actually see what this URL will return if we access it directly.
If we navigate to quote1.php?symbol=GOOG, we get back nothing but a
stock quote—no HTML markup, even. It is our handler function which
will be manipulating this directly.

4.8.2 ajax3.html

• Slightly more sophisticated than an alert window would be to embed the
response in the actual HTML of the webpage, as we do in ajax3.html:

<!--

ajax3.html

Gets stock quote (plus day’s low and high) from quote2.php via Ajax,

4The URL is actually relative, so the prefix https://cloud.cs50.net/ will be assumed.

17

Computer Science 50
Fall 2010
Scribe Notes

Week 9 Wednesday: November 3, 2010
Andrew Sellergren

embedding result in page itself after indicating progress with an
animated GIF.

Computer Science 50
David J. Malan

-->

<!DOCTYPE html>

<html>
<head>
<script type="text/javascript">
// <![CDATA[

// an XMLHttpRequest
var xhr = null;

/*
* void
* quote()
*
* Gets a quote.
*/
function quote()
{

// instantiate XMLHttpRequest object
try
{

xhr = new XMLHttpRequest();
}
catch (e)
{

xhr = new ActiveXObject("Microsoft.XMLHTTP");
}

// handle old browsers
if (xhr == null)
{

alert("Ajax not supported by your browser!");
return;

}

// construct URL
var url = "quote2.php?symbol=" +

document.getElementById("symbol").value;

18

Computer Science 50
Fall 2010
Scribe Notes

Week 9 Wednesday: November 3, 2010
Andrew Sellergren

// show progress
document.getElementById("progress").style.display = "block";

// get quote
xhr.onreadystatechange = handler;
xhr.open("GET", url, true);
xhr.send(null);

}

/*
* void
* handler()
*
* Handles the Ajax response.
*/
function handler()
{

// only handle requests in "loaded" state
if (xhr.readyState == 4)
{

// hide progress
document.getElementById("progress").style.display = "none";

// embed response in page if possible
if (xhr.status == 200)

document.getElementById("quote").innerHTML =
xhr.responseText;

else
alert("Error with Ajax call!");

}
}

//]]>
</script>
<title>ajax3</title>

</head>
<body>
<form onsubmit="quote(); return false;">
Symbol: <input id="symbol" type="text">

<div id="progress" style="display: none">

</div>

19

Computer Science 50
Fall 2010
Scribe Notes

Week 9 Wednesday: November 3, 2010
Andrew Sellergren

<div id="quote"></div>

<input type="submit" value="Get Quote">

</form>
</body>

</html>

In the actual HTML source, we see that the the progress bar GIF is ac-
tually already embedded. But because the div which contains it has its
CSS property display set to none, it won’t actually be visible when the
page is first loaded. If we examine the JavaScript, we see that it’s almost
identical to ajax1.html, except for a few lines, one in the quote func-
tion which sets the display property to block, and one in the handler
function which sets this display property back to none.

• Realize that the GIF animation is not beginning when we click Get Quote.
The animation is actually built into the GIF, which has been in the back-
ground the whole time. We simply make it visible when we click Get
Quote.

20

	Announcements and Demos (0:00--10:00)
	FAQs (10:00--20:00)
	HTTP Errors
	Sessions
	Interpolation
	PHP Documentation

	Cool Demos (20:00--34:00)
	HTML5
	JavaScript
	PHP

	JavaScript (34:00--74:00)
	form1.html
	dump.php
	form2.html
	The DOM
	form2.html (cont'd)
	form3.html
	form4.html
	Ajax
	ajax1.html
	ajax3.html

