
A Real-Time Algorithm for the (n2 − 1)-Puzzle

Ian Parberry

Department of Computer Sciences, University of North Texas, P.O. Box 13886,
Denton, TX 76203–6886, U.S.A. Email: ian@cs.unt.edu. URL:

http://hercule.csci.unt.edu/ian.

Abstract

A real-time algorithm for the (n2−1)-puzzle is designed using greedy and divide-
and-conquer techniques. It is proved that (ignoring lower order terms) the new
algorithm uses at most 5n3 moves, and that any such algorithm must make at least
n3 moves in the worst case, at least 2n3/3 moves on average, and with probability
one, at least 0.264n3 moves on random configurations.

Keywords: Analysis of algorithms, 15-puzzle, (n2 − 1)-puzzle, greedy algorithm,
divide and conquer, real-time algorithm, lower bound, Manhattan distance.

1 Introduction

The 15-puzzle is defined as follows. We are given 15 numbered tiles arranged
in a 4×4 grid (leaving one tile missing). The aim is to scramble the puzzle and
return it to the target configuration shown in Figure 1 by repeatedly sliding
an adjacent tile into the blank location. Horden [3] gives an interesting history
of this puzzle and its variants. It has long been known that exactly half of the
permutations of tiles can be solved (see, for example, Gardner [2]). When the
blank is in the lower right-hand corner of the board, the legal configurations of
the puzzle are exactly those that can be obtained by performing an even num-
ber of transpositions of tiles. Early work on the 15-puzzle includes Johnson [4]
and Storey [10].

41 2 3

5 8

9

76

10 11 12

14 1513

Fig. 1. Target configuration of the 15-puzzle. The blank is black.

Preprint submitted to Elsevier Science 5 February 1997

The obvious generalization of this puzzle to an n × n board is called the
(n2 − 1)-puzzle. The minimum number of moves to solve each legal permuta-
tion of the 8-puzzle has been exhaustively enumerated by Schofield [9]. The
minimum number of moves needed to solve the 15-puzzle in the worst case is
unknown, but has been the subject of various papers in the Artificial Intelli-
gence literature including Michie, Fleming and Oldfield [7] and Korf [5]. Ratner
and Warmuth [8] have proved that the problem of determining the minimum
number of moves for any given legal configuration of the (n2 − 1)-puzzle is
NP-complete, and they demonstrate an approximation algorithm that makes
no more than a (fairly large) constant factor number of moves than necessary
for any given legal configuration. Kornhauser, Miller, and Spirakis [6] have
shown an algorithm for the (n2−1)-puzzle and its generalizations that always
runs in time O(n3).

We present a new algorithm for the (n2 − 1)-puzzle that is based on two stan-
dard algorithm design techniques: divide-and-conquer, and greedy algorithms.
The new algorithm has the following features:

– it is a real-time algorithm, that is, it generates a series of moves with O(1)
computation time required before the first move, and between each succes-
sive move,

– it makes no more than 5 times more moves than necessary on the worst-case
configuration.

– it makes no more than 7.5 times more moves than necessary on average
configurations,

– it makes no more than 19 times more moves than necessary on random
configurations, with probability one. (We follow the popular shorthand of
writing with probability one for a probability that approaches 1 as n in-
creases. In our case, the probability approaches 1 exponentially fast.)

The remainder of the paper is divided into two major sections, the first of
which describes the new algorithm and proves the upper bound on the number
of moves, and the second of which proves Manhattan distance lower bounds
on the number of moves required to solve worst-case, average, and random
configurations.

2 The Algorithm

The divide-and-conquer algorithm is described in high-level terms in Figure 2.
We will refer to the grid position in row i and column j as location (i, j), and
refer to the tile that belongs there as tile (i, j). The greedy algorithm alluded
to in line 2 of Figure 2 simply places tiles (1, k) for 1 ≤ k ≤ n into place,
and then tiles (k, 1) for 2 ≤ k ≤ n into place, one at a time. In general, for

2

procedure puzzle(n)

1. if n = 3 then solve by brute force else

2. use a greedy algorithm to put the first row and column into place

3. call puzzle(n − 1) to solve the remaining rows and columns

Fig. 2. Procedure for solving an n × n puzzle.

Fig. 3. Moving the shaded tile one place diagonally in six moves.

Fig. 4. Moving the shaded tile one place vertically in five moves.

3

21

3

21

3

21

3

21 1 2

3

1 2 3

Fig. 5. Completing the end of a row.

2 ≤ k ≤ n− 1, this is achieved as follows. We will first describe the procedure
for tiles (1, k) where k ≤ n/2. For convenience we will call tile (1, k) the target
tile. Without loss of generality, we will assume that the target tile is initially
located to the right of the board, that is, it is in location (i, j) for some i > 1,
j > n/2. The case j ≤ n/2 is similar and is left to the reader.

(i) Move the blank from location (2, k − 1) to the location immediately to
the right of the target tile. (Note that the algorithm will ensure that the
blank is in this location for all but the first tile in each row.)

(ii) Move the target tile to its home location (1, k).
(a) First move it diagonally to location the correct row or column (which-

ever it meets first) by repeating the sequence of moves shown in Fig-
ure 3.

(b) Move the target tile vertically or horizontally to its home location
(1, k) by repeating the sequence of moves shown in Figure 4 for ver-
tical motion, or its transpose for horizontal motion.

Theorem 1 Procedure puzzle(n) solves the (n2 − 1)-puzzle in at most 5n3 +
O(n2) moves.

3

Proof. Suppose the blank is in location (1, k) for some 2 ≤ k ≤ n/2, and that
tiles (1, j) are already home, for all 1 ≤ j < k. The number of moves required
to move tile (1, k) home is as follows:

(i) In the worst case the target tile will be in location (n, n), in which case
the blank can be moved to the last row in n − 1 moves, and thence to
the last column in n − k moves, a total of 2n − k − 1 moves in all. If the
target tile is in a different location, fewer moves will suffice.

(ii) In the worst case the target tile will be in location (n − 1, n), in which
case:
(a) it must be moved n − k − 1 places diagonally to location (k + 1, k),

which takes 6n − 6k − 6 moves, and then
(b) it must be moved k places vertically, which will take 5k moves.
Hence, this takes a total of 6n − k − 6 moves.

Therefore, tile (1, k) can be moved home in at most 8n − 2k − 7 moves, for
2 ≤ k ≤ n/2. A similar argument will show that the same bound holds for
k = 1. Hence, the leftmost half of the first row can be completed in

n/2∑

k=1

(8n − 2k − 7) = 15n2/4− 4n

moves. The rightmost half of the first row can be completed in a similar
fashion, using the vertical reflection of the operations shown in Figures 3 and 4.
The only difficulty is that of placing tile (1, n) correctly without disturbing
the rest of the first row. This is achieved by routing tile (1, n − 1) to place
(1, n) instead of place (1, n− 1), and routing tile (1, n) to place (2, n) instead
of place (1, n − 1). This takes no more moves than is required to put them in
their correct places. The row can then be completed in 5 moves as shown in
Figure 5. The total number of moves required to solve the first row is therefore
2(15n2/4 − 4n) + 5 = 15n2/2 − 8n + 5. The first column requires the same
number of moves minus 8n−9 for tile (1, 1) which is already in place. The total
for line 2 of the greedy algorithm is therefore 2(15n2/2− 8n+5)− (8n− 9) =
15n2 − 24n + 19 moves.

Let T (n) be the number of moves required by procedure puzzle(n). Schofield [9]
studies configurations of the 8-puzzle that have the blank in the center, and
has shown by exhaustive search that 30 moves are necessary and sufficient to
move from one configuration of this form to another (provided, of course, that
it is possible to do so at all). Therefore, we can conclude that T (3) = 34. The
remaining part of the recurrence relation is given by T (n) = T (n−1)+15n2−
24n + 19 for all n > 3. One may very easily verify by induction on n that

T (n) = 5n3 − 9n2/2 + 19n/2− 89.

4

4

1

4

2

3

1 4

2

3

1

2

3

4

2

3

1

Fig. 6. A configuration with Manhattan distance n3 − O(n2), for n even (left) and
n odd (right). The blank is black, and shaded tiles are invariant.

✷

It can be proved by induction on n that our algorithm operates in real-time,
that is, it takes O(1) time between moves.

3 Lower Bounds

Define the Manhattan distance of tile (i, j) in location (k, �) to be |i−k|+ |j−
�|, the minimum number moves required to move to location (i, j). Further
define the Manhattan distance of a puzzle configuration to be the sum of
the Manhattan distances of all of its tiles. Since a single move changes the
Manhattan distance of a configuration by unity, it follows that the maximum
Manhattan distance is a lower bound on the number of moves necessary to
solve the (n2 − 1)-puzzle.

Theorem 2 There is a configuration of the (n2 − 1)-puzzle that requires at
least n3 − O(n2) moves to solve.

Proof. The following construction, illustrated in Figure 6, results in a config-
uration with Manhattan distance n3 − O(n2). Suppose n is even. Divide the
(n2−1)-puzzle into four quadrants numbered 1 through 4 in row-major order.
Leaving the blank alone, swap the tiles in quadrant 4 with the corresponding
tiles in quadrant 1. Similarly, swap all of the corresponding tiles in quadrants
2 and 3. The resulting configuration is legal since the blank is in the lower
right-hand corner and it was obtained using an even number of transpositions,
and it has Manhattan distance n(n2 − 2) since there are n2 − 2 tiles that each
have Manhattan distance n. If n is odd, perform the above construction on
the lower right (n − 1)× (n − 1) sub-board, leaving the first row and column
invariant. The resulting configuration is once again legal, and has Manhattan
distance (n − 1)((n − 1)2 − 2) = n3 − 3n2 + n + 1. This can be increased by
2n(n − 1) by swapping tiles (1, i) with (n − i + 2, 1) for 2 ≤ i ≤ n, giving a
configuration with Manhattan distance n3 − n2 + n + 1. ✷

5

Hence, we can conclude from Theorems 1 and 2 that the algorithm of Sec-
tion 2 uses a number of moves within a factor of 5 of optimal on worst-case
configurations. Next we will consider average-case configurations.

First, let us consider the problem of legal versus nonlegal configurations. Sup-
pose the blank is in its home location, in the lower right-hand corner of the
board. Then the legal configurations of the puzzle are exactly those that can
be obtained by performing an even number of transpositions of tiles. There
is a one-to-one correspondence between legal and nonlegal configurations (ob-
tained by swapping tiles (1, 1) and (1, 2)) that increases the Manhattan dis-
tance by at most 1. Therefore, we can conclude that worst-case, average-case
and random-case Mahnattan distance over all configurations differs from the
worst-case, average-case and random-case Manhattan distance for legal con-
figurations (respectively) by at most unity. If the blank is not constrained to
remain in its home location, the same statement holds with a difference of at
most a term that is linear in n. Therefore, we will without loss of general-
ity reason about average and random configurations without consideration of
whether they are legal.

Theorem 3 The average configuration of the (n2 − 1)-puzzle requires at least
2n3/3− O(n2) moves to solve.

Proof. Let Mi,j denote the total Manhattan distance from every location
in the board to location (i, j), then the average Manhattan distance for the
(n2 − 1)-puzzle will be

∑n
i=1

∑n
j=1 Mi,j/n

2. Mi,j can easily be determined as
follows.

The Manhattan distance from each tile in column � to location (i, �) is

i−1∑

k=1

k +
n−i∑

k=1

k = i2 − (n + 1)i + n(n + 1)/2.

For a total of n columns, this gives a Manhattan distance of ni2 −n(n+1)i+
n2(n + 1)/2 to place all tiles in row i. The Manhattan distance from there to
location (i, j) is (remembering that there are now n tiles in each location of
row i) similarly nj2 − n(n+ 1)j + n2(n+ 1)/2. The total Manhattan distance
is therefore

n∑

i=1

n∑

j=1

ni2 − n(n + 1)i + n2(n + 1) + nj2 − n(n + 1)j = 2n3(n2 − 1)/3.

The astute reader will notice that we have overcounted by n(n − 1)/2 for the
blank, giving a total Manhattan distance of n(2n4 − 2n2 − 3n + 1)/3. The
average Manhattan distance is therefore 2n3/3− O(n2). ✷

6

Hence, we can conclude from Theorems 1 and 3 that the algorithm of Section 2
uses a number of moves within a factor of 7.5 of optimal on average configura-
tions. Finally we consider the Manhattan distance on random configurations.

Theorem 4 For n sufficiently large, a random configuration of the (n2 − 1)-
puzzle has a Manhattan distance of at least 0.264n3 with probability at least
1− 0.9998n.

Proof. Let B(m, N, p) be the probability of obtaining at least m successes
out of N Bernoulli trials, each with probability p of success. The following
result is a well-known consequence of the Chernoff bounds (see, for example,
Valiant and Angluin [1] and Valiant and Brebner [11]): Let β = m/Np− 1. If
0 ≤ β ≤ 1, then B(m, N, p) ≤ e−β2Np/2.

Consider a random configuration of the (n2−1)-puzzle. Let p be the probabil-
ity that a single tile lands within Manhattan distance dn of its home location.
Suppose p ≤ ε ≤ 2p. Then, the probability that at least εn2 of the n2 tiles land
within Manhattan distance dn of their respective home locations is bounded
above by B(εn2, n2, p). That is, the probability that the total Manhattan dis-
tance is less than d(1− ε)n3 is bounded above by B(εn2, n2, p).

Since there are at most 2d2n2 + 2dn + 1 locations at Manhattan distance at
most dn from any particular location of the board, p = 2d2+2d/n+1/n2, which
in the limit approaches 2d2. Suppose we choose d = 0.4, which implies that
p < 0.33. We can then choose ε = 0.34. (The optimum choice for d is actually
1/
√
6 and ε may be chosen arbitrarily close but not equal to d, but these

values are convenient and sufficient for our purposes.) From the above, the
probability that the total Manhattan distance is less than 0.264n3 is bounded
above, for large enough n, by B(0.34n2, n2, 0.33) ≤ e−n2/6600 ≈ 0.9998n2

. ✷

Hence, we can conclude from Theorems 1 and 4 that the algorithm of Section 2
uses a number of moves within a factor of 5/0.264 < 19 of optimal on random
configurations, with probability one.

4 Conclusion and Open Problems

We have demonstrated a real-time algorithm for the (n2 − 1)-puzzle that gen-
erates a solution that is no more than 5 times longer than necessary in the
worst case, no more than 7.5 times longer than necessary on average configu-
rations, and with probability one no more than 19 times longer than necessary
on random configurations. It would be interesting to find a faster algorithm.

7

On the other hand, all three of our lower bounds seem weak. Is there some
better lower bound technique than the Manhattan distance? A more feasible
open problem would be to obtain a lower bound that is larger than that of
Theorem 4 (which is proved by a straightforward method) for the Manhattan
distance of a random configuration.

Our algorithm is not an approximation algorithm since there exist configu-
rations reachable by a sequence moves of length O(n2) for which the algo-
rithm takes Ω(n3) moves to solve (for example, move the blank n revolu-
tions around the perimeter of the board). However, we have demonstrated a
constant-multiple that is superior to any that have been proved for approxima-
tion algorithms in both the worst case and on average. It has been conjectured
that various approximation algorithms exhibit a better constant multiple in
practice than the theoretical results might lead us to believe (see, for example,
Ratner and Warmuth [8]). We cannot comment on that, but have observed
that our algorithm may be superior in practice since it works in real time
(and hence the user does not have to wait for tiles to move at any point), and
empirical observations seem to indicate that random configurations are closer
to the worst case than the lower bound of Theorem 4 might lead us to expect.

Horden [3] suggests that one should be allowed to slide a contiguous part of
a row or column together instead of just a single tile, and still count it as one
move. Our algorithm makes at most 11n3/3 + O(n2) moves in the worst case
under this measure. However, there is no known matching asymptotic lower
bound. Both the Manhattan distance and decision tree arguments give lower
bounds of Ω(n2) only. It is interesting to ask whether this gap between the
upper and lower bound can be tightened.

5 Acknowledgements

The author is grateful to the following people for helping with references on
the 15-puzzle: Lloyd Allison, David Grabiner, Othar Hansson, Dan Hoey, Jim
Holloway, Richard Korf, Victor Miller, Alan Mackworth, and Manfred War-
muth; and also to Martin Huehne and Bettina Sucrow for stimulating email
conversations. The author is also grateful to Steve Tate for the idea behind
an earlier draft of Theorem 4, and the anonymous referees for several useful
suggestions that improved the style and content of this manuscript.

8

References

[1] D. Angluin and L. Valiant. Fast probabilistic algorithms for Hamiltonian
circuits and matchings. In Proceedings of the Ninth Annual ACM Symposium
on Theory of Computing. ACM Press, 1977.

[2] M. Gardner. The Mathematical Puzzles of Sam Loyd. Dover, 1959.

[3] L. E. Horden. Sliding Piece Puzzles. Oxford University Press, 1986.

[4] W. A. Johnson. Notes on the 15 puzzle 1. American Journal of Mathematics,
2(4):397–399, 1879.

[5] R. E. Korf. Depth-first iterative deepening: An optimal admissible tree search.
Artificial Intelligence, 27(1):97–109, 1985.

[6] D. Kornhauser, G. Miller, and P. Spirakis. Coordinating pebble motion
on graphs, the diameter of permutation groups, and applications. In 25th
Annual Symposium on Foundations of Computer Science, pages 241–250. IEEE
Computer Society Press, 1984.

[7] D. Michie, J. G. Fleming, and J. V. Oldfield. A comparison of heuristic,
interactive, and unaided methods of solving a shortest-route problem. In
D. Michie, editor, Machine Intelligence 3, pages 245–255. American Elsevier,
1968.

[8] D. Ratner and M. K. Warmuth. The (n2 − 1)-puzzle and related relocation
problems. Journal for Symbolic Computation, 10:11–137, 1990.

[9] P. D. A. Schofield. Complete solution of the eight puzzle. In N. L. Collins and
D. Michie, editors, Machine Intelligence 1, pages 125–133. American Elsevier,
1967.

[10] W. E. Storey. Notes on the 15 puzzle 2. American Journal of Mathematics,
2(4):399–404, 1879.

[11] L. G. Valiant and G. J. Brebner. A scheme for fast parallel communication.
SIAM Journal on Computing, 11(2):350–361, 1982.

9

