
Creating
Awesome

Websites with
Ruby on Rails

Tommy
MacWilliam

Ruby

MVC

Rails

Creating Awesome Websites with
Ruby on Rails

Tommy MacWilliam

Harvard University

November 13, 2010

Creating
Awesome

Websites with
Ruby on Rails

Tommy
MacWilliam

Ruby

MVC

Rails

Today

I the Ruby programming language
I MVC: what and why?
I Riding the Rails like a pro

Creating
Awesome

Websites with
Ruby on Rails

Tommy
MacWilliam

Ruby

MVC

Rails

Today

I are you ready?
I creating awesome web applications is not a spectator

sport

Creating
Awesome

Websites with
Ruby on Rails

Tommy
MacWilliam

Ruby

MVC

Rails

Setup

I http://www.ruby-lang.org/en/downloads/
I Ruby 1.9.2 is recommended (that’s what I’ll be using)
I Windows users, make sure you check all the boxes on

the installer

I then, run gem install rails

I this will install Rails 3.0 (which is different than Rails 2!)
I don’t worry if nothing comes up on the terminal for a

while, it’s downloading

Creating
Awesome

Websites with
Ruby on Rails

Tommy
MacWilliam

Ruby

MVC

Rails

Setup

I if you run into an error message about sqlite, then grab
a binary from http://www.sqlite.org/download.html

I Windows: copy the DLL to the “bin” folder in your Ruby
install path (on Windows, probably C:\Ruby192\bin)

I UNIX: make sure you’ve installed ruby, ruby-dev,
sqlite3, libsqlite3-dev, and
libsqlite3-ruby

I if you get an error message about ruby or rails not
being found, make sure the binaries are in your PATH

I Google is your friend, you’re not the first person to have
trouble

Creating
Awesome

Websites with
Ruby on Rails

Tommy
MacWilliam

Ruby

MVC

Rails

Ruby

I Wikipedia says, “Ruby is a dynamic, reflective, general
purpose object-oriented programming language”

I sounds cool to me

I Ruby wants to help you get stuff done
I clean, readable, intuitive syntax
I no petty low-level stuff (aka pointers)
I huge standard library, 100% documented

Creating
Awesome

Websites with
Ruby on Rails

Tommy
MacWilliam

Ruby

MVC

Rails

Ruby

I “Hello, World!” program in C (in case you forgot):

#include <stdio.h>
int main(int argc, char** argv) {

printf(“Hello, World\n”);
return 0;

}

Creating
Awesome

Websites with
Ruby on Rails

Tommy
MacWilliam

Ruby

MVC

Rails

Ruby

I “Hello, World!” program in Ruby

puts “Hello, World!”

Creating
Awesome

Websites with
Ruby on Rails

Tommy
MacWilliam

Ruby

MVC

Rails

Ruby

I owned.

Creating
Awesome

Websites with
Ruby on Rails

Tommy
MacWilliam

Ruby

MVC

Rails

Ruby

I minor syntactic differences
I no more braces: end designates the end of a

condition/loop
I no more semicolons either
I parentheses for function arguments are optional
I # is a single-line comment
I =begin starts a multi-line comment, =end ends a

multi-line comment
I elsif keyword is used instead of else if

Creating
Awesome

Websites with
Ruby on Rails

Tommy
MacWilliam

Ruby

MVC

Rails

Ruby

I Ruby is an interpreted language: no compiling, just
write code and run it

I Ruby is dynamically typed: you don’t need to specify
types for variables and functions

def say_hello(name)

puts “Hello, ” + name

end

Creating
Awesome

Websites with
Ruby on Rails

Tommy
MacWilliam

Ruby

MVC

Rails

Ruby Arrays

I Ruby arrays do not have a fixed size and can contain
multiple types

I numbers = [1, “2”, 3]

I access the 0th element of the array: numbers[0]
I add a new element to the array: numbers.push(4)
I get the value of the last element and remove it from the

array: numbers.pop()
I get the value of the first element and remove it from the

array: numbers.shift()
I concatenate two arrays: numbers + [5, 6, 7]

Creating
Awesome

Websites with
Ruby on Rails

Tommy
MacWilliam

Ruby

MVC

Rails

Ruby Hashes

I Ruby also has built-in support for hashtables
I tf = { :name => “Tommy”, :rank => 1 }

I access the “name” field: tf[:name]
I add a new field: tf[:coolness] = “high”

Creating
Awesome

Websites with
Ruby on Rails

Tommy
MacWilliam

Ruby

MVC

Rails

Ruby Blocks

I iterating over an array in Ruby is different (aka better)
than what we’ve seen so far

I Ruby makes heavy use of “blocks”: pieces of code that
are passed as arguments to a function

numbers.each do |number|

puts number

end

I every array has a function called each, which takes a
single block as an argument

I the block will be called on every element of the array
individually

I the argument to the block (called number and given
inside pipes, not parentheses) is the current element of
the array

Creating
Awesome

Websites with
Ruby on Rails

Tommy
MacWilliam

Ruby

MVC

Rails

Ruby Helpful Links

I a great (free) book if you want to learn even more
Ruby: http://ruby-doc.org/docs/ProgrammingRuby/

I complete documentation (with examples) for every
function in the standard library:
http://ruby-doc.org/ruby-1.9/index.html

Creating
Awesome

Websites with
Ruby on Rails

Tommy
MacWilliam

Ruby

MVC

Rails

MVC: What?

I MVC stands for “model-view-controller”
I MVC is a design pattern: a solution to a common,

general problem
I in this case, “how do I structure my web application?”

I also used by frameworks like CakePHP and the iOS
SDK

Creating
Awesome

Websites with
Ruby on Rails

Tommy
MacWilliam

Ruby

MVC

Rails

MVC: What?

I model: the database in your application
I abstracts away SQL queries, access your database as

if it were a Ruby object

I view: the user interface in your application
I what the user actually sees, like HTML pages

I controller: the bridge between model and view
I query the model for data and pass it to the view

Creating
Awesome

Websites with
Ruby on Rails

Tommy
MacWilliam

Ruby

MVC

Rails

MVC: Why?

I allows for clean separation of design and logic
I cleaner organization of code
I maximize code re-usability

Creating
Awesome

Websites with
Ruby on Rails

Tommy
MacWilliam

Ruby

MVC

Rails

Creating a new Rails Application

I creating a new application: rails new
<application name>

I creates a new folder corresponding to the application
name we specified

I we’re going to create a blog, so let’s run rails new
blog

I now, we just need to make sure everything is installed
correctly

I runing bundle install will take care of all that for
you

Creating
Awesome

Websites with
Ruby on Rails

Tommy
MacWilliam

Ruby

MVC

Rails

Creating a new Rails Application

I example time!
I creating a new application

Creating
Awesome

Websites with
Ruby on Rails

Tommy
MacWilliam

Ruby

MVC

Rails

Creating a new Rails Application

I WOAH. that’s a lot of files Rails just made for us
I all of our code will go into the app directory

I and there are already folders for models, views, and
controllers!

I you’ll also notice folders for images, stylesheets, and
javascripts in the public folder

I sweet, that required like 0 effort

Creating
Awesome

Websites with
Ruby on Rails

Tommy
MacWilliam

Ruby

MVC

Rails

Rails Resources

I our blog needs to have posts, so we need to create a
model/controller/views for creating, viewing, editing,
and deleting posts

I a post is called a “resource”: a single “thing” that can be
manipulated and represented in a database

I before we create a resource, we need to know what
fields the database table should have

I for now, a post has a title and content

Creating
Awesome

Websites with
Ruby on Rails

Tommy
MacWilliam

Ruby

MVC

Rails

Rails Resources

I creating a resource: rails generate scaffold
<resource name> <column:type> ...

I “scaffold” tells rails to create the model, view, and
controller all at once

I so we want to run rails generate scaffold
Post title:string content:text

Creating
Awesome

Websites with
Ruby on Rails

Tommy
MacWilliam

Ruby

MVC

Rails

Rails Migrations

I now that we have our resource, we need to add a new
table to our database to reflect that

I so we have to go into phpMyAdmin and create a new
table and create the columns and give the columns
types and stuff right?

Creating
Awesome

Websites with
Ruby on Rails

Tommy
MacWilliam

Ruby

MVC

Rails

Rails Migrations

I WRONG.
I just run rake db:migrate

I in Rails, a modification to the database is called a
“migration”

I Rails can take care of all that database stuff for you,
since it created the resource for you

Creating
Awesome

Websites with
Ruby on Rails

Tommy
MacWilliam

Ruby

MVC

Rails

Rails Resources

I example time!
I creating a new resource and running its migration

Creating
Awesome

Websites with
Ruby on Rails

Tommy
MacWilliam

Ruby

MVC

Rails

Rails Server

I okay, let’s check out what Rails did for us
I running your application: rails server

I now, navigate your browser to
http://localhost:3000

I we created a resource for blog posts, so let’s head over
to http://localhost:3000/posts

Creating
Awesome

Websites with
Ruby on Rails

Tommy
MacWilliam

Ruby

MVC

Rails

Rails Server

I example time!
I viewing our application

Creating
Awesome

Websites with
Ruby on Rails

Tommy
MacWilliam

Ruby

MVC

Rails

Rails is Pretty Sweet

I http://www.youtube.com/watch?v=wacmF9_6WqU
I that just happened.

I we just made a blog without writing a single line of code
I nbd.

Creating
Awesome

Websites with
Ruby on Rails

Tommy
MacWilliam

Ruby

MVC

Rails

Rails Generated Code

I let’s take a look at the code that was so nicely written
for us

I the post model is located in /app/models/post.rb

I the post views are located in /app/views/posts

I the post controller is located in
/app/controllers/posts_controller.rb

Creating
Awesome

Websites with
Ruby on Rails

Tommy
MacWilliam

Ruby

MVC

Rails

Rails Models

I the model is extremely simple: our posts aren’t doing
anything fancy with the database, so we just need an
empty class

I notice the class inherits from ActiveRecord::Base

I the parent class is going to take care of everything we
need

Creating
Awesome

Websites with
Ruby on Rails

Tommy
MacWilliam

Ruby

MVC

Rails

Rails Controllers

I the controller is a bit more complicated
I each function in the controller corresponds to a single

user action
I creating a post is a single action
I each action maps to a specific URL (which Rails has so

nicely labeled in the comments)

Creating
Awesome

Websites with
Ruby on Rails

Tommy
MacWilliam

Ruby

MVC

Rails

Rails Controllers

I the params hash is analogous to PHP’s $_GET and
$_POST arrays

I if the user makes a request to /posts/edit/1, then
params[:id] == 1

I to pass a variable to the view, declare it with @ before
its name

I Post.new creates a new instance of the Post class
(our model)

I this object will represent a single post in the database
I the save function saves the object to the database

(INSERT-ing or UPDATE-ing as necessary, you don’t
have to worry about that either)

Creating
Awesome

Websites with
Ruby on Rails

Tommy
MacWilliam

Ruby

MVC

Rails

Rails Controllers

I index: get all posts and pass them on to the view
I show: get a single post with the ID specified in the URL

and pass it to the view
I new: create a blank post object and pass it to a view

that contains a form for a new post
I edit: send the data for an already-existing post to the

view that contains a form to edit a post
I create: use the data passed from the view to create a

new row in the Post table
I update: use the data passed from the view to update

an existing fro in the Post table
I destroy: delete a post with the ID specified in the

URL

Creating
Awesome

Websites with
Ruby on Rails

Tommy
MacWilliam

Ruby

MVC

Rails

Rails Views

I each user action also has its own view (.erb file)
I PHP uses <? ?> to embed PHP code in HTML, Ruby

uses <% %>

I the link_to function generates URLs so we don’t
have to deal with ugly string concatenation

I link_to(<text>, <resource>): URL for the show
function for a single instance of a resource

I link_to(<text>,
edit_<resource>_path(<resource>): URL for
the edit function for a single instance of a resource

I link_to(<text>, <resource>s_path): URL for
the index function for all instances of a resource

I the form_for function generates the HTML for a form

Creating
Awesome

Websites with
Ruby on Rails

Tommy
MacWilliam

Ruby

MVC

Rails

Rails Views

I index.html.erb: use a Ruby block to iterate over all
posts and display them in a table

I edit.html.erb: render and populate a form with
values from an already-existing post

I new.html.erb: render a blank for to allow the user to
create a new post

I show.html.erb: display the fields of a post

Creating
Awesome

Websites with
Ruby on Rails

Tommy
MacWilliam

Ruby

MVC

Rails

Adding Authors

I let’s add the ability to view all posts by a certain author
I new field in our database for an author
I new function in the controller
I add author fields to existing views and create a new

view to display author results

Creating
Awesome

Websites with
Ruby on Rails

Tommy
MacWilliam

Ruby

MVC

Rails

Adding Authors

I we need a database migration to add a new column to
the posts table

I add a column: rails generate migration
Add<column>To<table> <column:type>

I remove a column: rails generate migration
Remove<column>From<table> <column:type>

I so we want to run: rails generate migration
AddAuthorToPosts author:string

I now we just run rake db:migrate again and we’re
good to go

Creating
Awesome

Websites with
Ruby on Rails

Tommy
MacWilliam

Ruby

MVC

Rails

Adding Authors

I now we can create a new function called author in the
Posts controller that will get all posts from a given
author

I the Post class already has a built-in function called
where that will query our database for us

I @posts = Post.where({ :author =>
params[:id] })

I this will get all the posts where the author is the author
author specified in the URL and send them all to the
view

I we can just re-use the index view, so copy
index.html.erb and rename it to
author.html.erb

Creating
Awesome

Websites with
Ruby on Rails

Tommy
MacWilliam

Ruby

MVC

Rails

Adding Authors

I notice there’s an extra file called _form.html.erb in
our views folder

I this is called a partial: a small chunk of re-usable view
code

I in this case, the form that will be displayed to the user
when creating/editing a post

I the create/edit views then simply use the render
function, giving it the name of the partial, to display the
same form

I just like the PHP require_once function

I if we just edit this, then our changes will be reflected in
both /posts/new and /posts/edit

Creating
Awesome

Websites with
Ruby on Rails

Tommy
MacWilliam

Ruby

MVC

Rails

Adding Authors

I notice how our URLs are magically mapped to
functions in your controller

I /posts/new knows to call the new function in
posts_controller

I Ruby “routes” a URL to a controller/function based on
the contents of /config/routes.rb

I resources is a shortcut for mapping index, new,
show, etc. individually

I to add our new author function, we can just follow the
instructions given in the comments of routes.rb

I author will be a member of the posts resource and
accessed with a GET request

I you can view all routes in your application with rake
routes

Creating
Awesome

Websites with
Ruby on Rails

Tommy
MacWilliam

Ruby

MVC

Rails

Adding Authors

I example time!
I adding the author field

Creating
Awesome

Websites with
Ruby on Rails

Tommy
MacWilliam

Ruby

MVC

Rails

Adding Comments

I now let’s give users the ability to comment on posts
I adding authors to posts required modifying the Post

model, but we’re going to need a new model for
Comments

I just like before: rails generate scaffold
Comment author:string content:text
post:references

I a comment must be tied to a specific post, so we need
a special field containing which post it refers to

I don’t forget to rake db:migrate

Creating
Awesome

Websites with
Ruby on Rails

Tommy
MacWilliam

Ruby

MVC

Rails

Adding Comments

I when we fetch a Post from the database, we also want
to get all of its associated comments

I as you hopefully expected at this point, Rails will do this
for you

I we need to update the models for Post and Comment
to reflect this relationship

I a Post has_many comments
I a Comment belongs_to a post

I we also need to update our routes
I Rails needs to know how to attach a comment to a

specific post
I a comment cannot exist without a post, so it must be a

resource of posts

Creating
Awesome

Websites with
Ruby on Rails

Tommy
MacWilliam

Ruby

MVC

Rails

Adding Comments

I we need to update our views to allow users to comment
on a post

I the new comment form should go in
/app/views/posts/show.html.erb

I we can use _form.html.erb as a starting point
I change the labels and text fields to reflect the columns

in our comments model: author and content

I the post’s comments must be added to the form_for
method so the form submits to the comments controller

I we need to call the build function on the comments
field because the new comment will be linked to an
existing post

Creating
Awesome

Websites with
Ruby on Rails

Tommy
MacWilliam

Ruby

MVC

Rails

Adding Comments

I this view should also display all of the given post’s
comments

I we can use index.html.erb as a starting point
I use the each iterator on the post’s comments, then

display the commenter’s name and the comment

Creating
Awesome

Websites with
Ruby on Rails

Tommy
MacWilliam

Ruby

MVC

Rails

Adding Comments

I finally, we need to update our controller to save
comments to the database as well

I remember, the form we just created will send data to
the create function in the comments controller, so we
need to modify that

I first, we need to get the post being commented on from
the database

I because we set up our routes, params will contain a
post_id field representing the ID of the post we’re
commenting on

I to associate the submitted comment with this post, call
the create function on the post object’s comments
field

I finally, we can save the post to the database

Creating
Awesome

Websites with
Ruby on Rails

Tommy
MacWilliam

Ruby

MVC

Rails

Adding Comments

I example time!
I adding comments

Creating
Awesome

Websites with
Ruby on Rails

Tommy
MacWilliam

Ruby

MVC

Rails

Rails Layouts

I you may have noticed that our views aren’t full HTML
documents

I no <html> or <body> tags

I but, when we view the source of a page, it looks like we
have valid HTML

I the secret lies in that layouts folder in /app/views

Creating
Awesome

Websites with
Ruby on Rails

Tommy
MacWilliam

Ruby

MVC

Rails

Rails Layouts

I application.html.erb is the layout for every page
in your application

I aha! the <html> tag!

I when Rails renders your page, it inserts the view’s
.erb file at the <%= yield %> statement in the layout

I adding a header or a navigation bar to every page in
your application is as simple as editing the layout

I per-controller layouts are also supported
I just create a file called <resource>.html.erb inside

this folder (e.g. posts.html.erb)

Creating
Awesome

Websites with
Ruby on Rails

Tommy
MacWilliam

Ruby

MVC

Rails

Rails Layouts

I stylesheet_link_tag and
javascript_include_tag will generate HTML to
include CSS/JS

I just put your CSS and JS files in
/public/stylesheets and
/public/javascripts

I javascript_include_tag(“magic”) includes the
file magic.js

I image_tag will generate the HTML to put images on
your page

I you /must/ use these functions rather than writing
 and <script> tags yourself

I the same layout file is used for /posts and
/posts/1/edit, but you need to specify the path to
the image/CSS/JS file

Creating
Awesome

Websites with
Ruby on Rails

Tommy
MacWilliam

Ruby

MVC

Rails

Rails Helpful Links

I API documentation and helpful guides:
http://rubyonrails.org

I free eBook about Rails: http://railstutorial.org/book

Creating
Awesome

Websites with
Ruby on Rails

Tommy
MacWilliam

Ruby

MVC

Rails

Thanks!

I go make something awesome!
I questions? comments? suggestions?
<tmacwilliam@cs50.net>

	Ruby
	MVC
	Rails

