Creating

Awesome
Websites with
Ruby on Rails

Creating Awesome Websites with
Ruby on Rails

Tommy MacWilliam
Harvard University

November 13, 2010

Creating

Awesome
Websites with
Ruby on Rails

» the Ruby programming language
» MVC: what and why?
» Riding the Rails like a pro

Creating

Awesome
Websites with
Ruby on Rails

» are you ready?

» creating awesome web applications is not a spectator
sport

Creating
Awesome
Websites with
Ruby on Rails

mmy
liam

» http://www.ruby-lang.org/en/downloads/

» Ruby 1.9.2 is recommended (that’s what I'll be using)
» Windows users, make sure you check all the boxes on
the installer

» then, run gem install rails

» this will install Rails 3.0 (which is different than Rails 2!)
» don’t worry if nothing comes up on the terminal for a
while, it's downloading

Creating
Awesome
Websites with
Ruby on Rails

» if you run into an error message about sqlite, then grab
a binary from http://www.sqglite.org/download.html
» Windows: copy the DLL to the “bin” folder in your Ruby
install path (on Windows, probably C:\Ruby192\bin)
» UNIX: make sure you've installed ruby, ruby-dev,
sglite3, libsglite3-dev, and
libsglite3-ruby

» if you get an error message about ruby or rails not
being found, make sure the binaries are in your PATH

» Google is your friend, you're not the first person to have
trouble

Creating
Awesome
Websites with
Ruby on Rails

mmy
liam

» Wikipedia says, “Ruby is a dynamic, reflective, general
purpose object-oriented programming language”
» sounds cool to me
» Ruby wants to help you get stuff done

» clean, readable, intuitive syntax
» no petty low-level stuff (aka pointers)
» huge standard library, 100% documented

Creating
Awesome
Websites with
Ruby on Rails

» “Hello, World!” program in C (in case you forgot):
#include <stdio.h>
int main(int argc, charxx argv) {

printf (“Hello, World\n”);
return O;

Creating

Awesome
Websites with
Ruby on Rails

Tommy
Villiam

» “Hello, World!” program in Ruby

puts “Hello, World!”

Creating
Awesome
Websites with
Ruby on Rails

Creating
Awesome
Websites with
Ruby on Rails

Tommy
Villiam

»

v v VY

» minor syntactic differences

no more braces: end designates the end of a
condition/loop

no more semicolons either

parentheses for function arguments are optional

is a single-line comment

=begin starts a multi-line comment, =end ends a
multi-line comment

elsif keyword is used instead of else if

Creating
Awesome
Websites with
Ruby on Rails

Tom

» Ruby is an interpreted language: no compiling, just
write code and run it

» Ruby is dynamically typed: you don’t need to specify
types for variables and functions

def say_hello(name)

puts “Hello, ” + name

end

Ruby Arrays

Creating
Awesome
Websites with
Ruby on Rails

Ruby arrays do not have a fixed size and can contain
multiple types

» numbers = [1, “27, 3]
» access the 0th element of the array: numbers [0]
» add a new element to the array: numbers.push (4)

» get the value of the last element and remove it from the
array: numbers.pop ()

» get the value of the first element and remove it from the
array: numbers.shift ()

» concatenate two arrays: numbers + [5, 6, 7]

Ruby Hashes

Creating
Awesome
Websites with
Ruby on Rails

» Ruby also has built-in support for hashtables
» tf = { :name => “Tommy”, :rank => 1 }

» access the “name” field: t £ [: name]
» add a new field: tf[:coolness] = “high”

Ruby Blocks

Creating

Awesome » iterating over an array in Ruby is different (aka better)

Websites with

Ruby on Rails than what we’ve seen so far

» Ruby makes heavy use of “blocks”: pieces of code that
are passed as arguments to a function

numbers.each do |number|
puts number

end

» every array has a function called each, which takes a
single block as an argument

» the block will be called on every element of the array
individually

» the argument to the block (called number and given
inside pipes, not parentheses) is the current element of
the array

Ruby Helpful Links

Creating
Awesome
Websites with
Ruby on Rails

» a great (free) book if you want to learn even more
Ruby: http://ruby-doc.org/docs/ProgrammingRuby/

» complete documentation (with examples) for every
function in the standard library:
http://ruby-doc.org/ruby-1.9/index.html

MVC: What?

Creating
Awesome
Websites with
Ruby on Rails

» MVC stands for “model-view-controller”

» MVC is a design pattern: a solution to a common,
general problem

» in this case, “how do | structure my web application?”

» also used by frameworks like CakePHP and the iOS
SDK

MVC: What?

Creating
Awesome
Websites with
Ruby on Rails

mmy
liam

» model: the database in your application

» abstracts away SQL queries, access your database as
if it were a Ruby object

» view: the user interface in your application
» what the user actually sees, like HTML pages
» controller: the bridge between model and view
» query the model for data and pass it to the view

MVC: Why?

Creating
Awesome
Websites with
Ruby on Rails

» allows for clean separation of design and logic
» cleaner organization of code
» maximize code re-usability

Creating a new Rails Application

Creating
Awesome
Websites with
Ruby on Rails

» creating a new application: rails new
<application name>

» creates a new folder corresponding to the application
name we specified

» we're going to create a blog, so let’srun rails new
blog

» now, we just need to make sure everything is installed
correctly

» runing bundle install will take care of all that for
you

Creating a new Rails Application

Creating
Awesome
Websites with
Ruby on Rails

» example time!

» creating a new application

Creating a new Rails Application

Creating
Awesome
Websites with
Ruby on Rails

» WOAH. that’s a lot of files Rails just made for us
» all of our code will go into the app directory

» and there are already folders for models, views, and
controllers!

» you'll also notice folders for images, stylesheets, and
javascripts in the public folder

» sweet, that required like 0 effort

Rails Resources

Creating
Awesome
Websites with
Ruby on Rails

Tomn

» our blog needs to have posts, so we need to create a
model/controller/views for creating, viewing, editing,
and deleting posts

» apostis called a “resource”: a single “thing” that can be
manipulated and represented in a database

» before we create a resource, we need to know what
fields the database table should have

» for now, a post has a title and content

Rails Resources

Creating
Awesome
Websites with
Ruby on Rails

» creating a resource: rails generate scaffold
<resource name> <column:type>

» “scaffold” tells rails to create the model, view, and
controller all at once

» sowewanttorun rails generate scaffold
Post title:string content:text

Rails Migrations

Creating
Awesome
Websites with
Ruby on Rails

» now that we have our resource, we need to add a new
table to our database to reflect that

» so we have to go into phpMyAdmin and create a new
table and create the columns and give the columns
types and stuff right?

Rails Migrations

Creating
Awesome
Websites with
Ruby on Rails

Tomn

» WRONG.
» justrun rake db:migrate

» in Rails, a modification to the database is called a
“migration”

» Rails can take care of all that database stuff for you,
since it created the resource for you

Rails Resources

Creating
Awesome
Websites with
Ruby on Rails

Tomnmr

» example time!

» creating a new resource and running its migration

Rails Server

Creating
Awesome
Websites with
Ruby on Rails

» okay, let’s check out what Rails did for us
» running your application: rails server

» now, navigate your browser to
http://localhost:3000

» we created a resource for blog posts, so let’'s head over
to http://localhost:3000/posts

Rails Server

Creating
Awesome
Websites with
Ruby on Rails

Tomnmr

» example time!

» viewing our application

Rails is Pretty Sweet

Creating
Awesome
Websites with
Ruby on Rails

» http://www.youtube.com/watch?v=wacmF9_6WqU
» that just happened.

» we just made a blog without writing a single line of code
» nbd.

Rails Generated Code

Creating
Awesome
Websites with
Ruby on Rails

Tomn

let’s take a look at the code that was so nicely written
for us

the post model is located in /app/models/post.rb
the post views are located in /app/views/posts

the post controller is located in
/app/controllers/posts_controller.rb

v

v

v

Rails Models

Creating
Awesome
Websites with
Ruby on Rails

Tomn

» the model is extremely simple: our posts aren’t doing
anything fancy with the database, so we just need an
empty class

» notice the class inherits from ActiveRecord: :Base

» the parent class is going to take care of everything we
need

Rails Controllers

Creating
Awesome
Websites with
Ruby on Rails

» the controller is a bit more complicated

» each function in the controller corresponds to a single
user action
» creating a post is a single action

» each action maps to a specific URL (which Rails has so
nicely labeled in the comments)

Rails Controllers

Creating
Awesome
Websites with

Ruby on Rails » the params hash is analogous to PHP’s $_GET and
/ $_POST arrays

» if the user makes a request to /posts/edit/1, then
params[:1id] ==

» to pass a variable to the view, declare it with @ before
its name

» Post.new creates a new instance of the Post class
(our model)

» this object will represent a single post in the database

» the save function saves the object to the database
(INSERT-ing or UPDATE-ing as necessary, you don'’t
have to worry about that either)

Rails Controllers

Creating
Awesome

Websites with index: get all posts and pass them on to the view

Ruby on Rails
» show: get a single post with the ID specified in the URL
and pass it to the view
» new: create a blank post object and pass it to a view
that contains a form for a new post

» edit: send the data for an already-existing post to the
view that contains a form to edit a post

» create: use the data passed from the view to create a
new row in the Post table

» update: use the data passed from the view to update
an existing fro in the Post table

» destroy: delete a post with the ID specified in the
URL

Rails Views

Creating
Awesome

T » each user action also has its own view (. erb file)
» PHP uses <? 2> to embed PHP code in HTML, Ruby
uses <% $>
» the 1ink_to function generates URLs so we don’t
have to deal with ugly string concatenation

» link_to (<text>, <resource>): URL forthe show
function for a single instance of a resource

» link_to (<text>,
edit_<resource>_path (<resource>): URL for
the edit function for a single instance of a resource

» link_to (<text>, <resource>s_path): URL for
the index function for all instances of a resource

» the form_for function generates the HTML for a form

Rails Views

Creating
Awesome
Websites with
Ruby on Rails

index.html.erb: use a Ruby block to iterate over all
posts and display them in a table

» edit.html.erb: render and populate a form with
values from an already-existing post

» new.html.erb: render a blank for to allow the user to
create a new post

» show.html.erb: display the fields of a post

Adding Authors

Creating
Awesome
Websites with
Ruby on Rails

Tomn

» let's add the ability to view all posts by a certain author

» new field in our database for an author

» new function in the controller

» add author fields to existing views and create a new
view to display author results

Adding Authors

Creating
Awesome
Websites with
Ruby on Rails

» we need a database migration to add a new column to
the posts table
» add acolumn: rails generate migration
Add<column>To<table> <column:type>

» remove a column: rails generate migration
Remove<column>From<table> <column:type>

» sowewanttorun: rails generate migration
AddAuthorToPosts author:string

» now we just run rake db:migrate again and we're
good to go

Adding Authors

Creating
Awesome

T » Now we can create a new function called author in the

Posts controller that will get all posts from a given
author

» the Post class already has a built-in function called
where that will query our database for us

» @posts = Post.where({ :author =>
params[:id] })

» this will get all the posts where the author is the author
author specified in the URL and send them all to the
view

» we can just re-use the index view, so copy
index.html.erb and rename it to
author.html.erb

Adding Authors

Creating
Awesome
Websites with

Ruby on Rails » notice there’s an extra file called _form.html.erb in
i our views folder

» this is called a partial: a small chunk of re-usable view
code

» in this case, the form that will be displayed to the user
when creating/editing a post

» the create/edit views then simply use the render
function, giving it the name of the partial, to display the
same form

> just like the PHP require_once function

» if we just edit this, then our changes will be reflected in
both /posts/newand /posts/edit

Adding Authors

Creating

Awesome notice how our URLs are magically mapped to
Websites with

Ruby on Rails functions in your controller

» /posts/new knows to call the new function in
posts_controller

» Ruby “routes” a URL to a controller/function based on
the contents of /config/routes.rb

» resources is a shortcut for mapping index, new,
show, etc. individually
» to add our new author function, we can just follow the
instructions given in the comments of routes.rb

» author will be a member of the post s resource and
accessed with a GET request

» you can view all routes in your application with rake
routes

Adding Authors

Creating
Awesome
Websites with
Ruby on Rails

» example time!
» adding the author field

Adding Comments

Creating
Awesome
Websites with
Ruby on Rails

» now let’s give users the ability to comment on posts

» adding authors to posts required modifying the Post
model, but we’re going to need a new model for
Comments

> just like before: rails generate scaffold
Comment author:string content:text
post:references
» a comment must be tied to a specific post, so we need

a special field containing which post it refers to
» don’t forgetto rake db:migrate

Adding Comments

Creating
Awesome

&“jﬁ’flﬁi}”ﬁﬁz » when we fetch a Post from the database, we also want
to get all of its associated comments

» as you hopefully expected at this point, Rails will do this
for you

» we need to update the models for Post and Comment
to reflect this relationship
» a Post has_many comments
» a Comment belongs_to a post

» we also need to update our routes

» Rails needs to know how to attach a comment to a
specific post

» a comment cannot exist without a post, so it must be a
resource of posts

Adding Comments

Creating
Awesome
Websites with
Ruby on Rails

» we need to update our views to allow users to comment
MacWiltam on a post

» the new comment form should go in
/app/views/posts/show.html.erb

» wecanuse _form.html.erb as a starting point

» change the labels and text fields to reflect the columns
in our comments model: author and content

» the post’s comments must be added to the form_for
method so the form submits to the comments controller
» we need to call the build function on the comments

field because the new comment will be linked to an
existing post

Adding Comments

Creating
Awesome
Websites with
Ruby on Rails

» this view should also display all of the given post’s
comments
» we can use index.html.erb as a starting point

» use the each iterator on the post’s comments, then
display the commenter’s name and the comment

Adding Comments

Creating
Awesome

W » finally, we need to update our controller to save
19)% i
comments to the database as well

» remember, the form we just created will send data to
the create function in the comments controller, so we
need to modify that

» first, we need to get the post being commented on from
the database

» because we set up our routes, params will contain a
post_id field representing the ID of the post we're
commenting on

» to associate the submitted comment with this post, call
the create function on the post object’s comments
field

» finally, we can save the post to the database

Adding Comments

Creating
Awesome
Websites with
Ruby on Rails

» example time!

» adding comments

Rails Layouts

Creating
Awesome
Websites with
Ruby on Rails

» you may have noticed that our views aren’t full HTML
documents

» NOo <html> or <body> tags

» but, when we view the source of a page, it looks like we
have valid HTML

» the secret lies in that 1ayouts folderin /app/views

Rails Layouts

Creating
Awesome
Websites with
Ruby on Rails

application.html.erb is the layout for every page
in your application

» aha! the <html> tag!
» when Rails renders your page, it inserts the view’s
.erb file at the <%= yield %> statement in the layout

» adding a header or a navigation bar to every page in
your application is as simple as editing the layout

» per-controller layouts are also supported

» just create afile called <resource>.html.erb inside
this folder (e.g. posts.html.erb)

Rails Layouts

Creating

e » stylesheet_link_tag and
Ruby on Rails javascript_include_tag will generate HTML to

include CSS/JS

liam
» just put your CSS and JS files in
/public/stylesheets and
/public/javascripts
» javascript_include_tag(“magic”) includes the
file magic. s

» image_tag will generate the HTML to put images on
your page
» you /must/ use these functions rather than writing
 and <script> tags yourself
» the same layout file is used for /posts and

/posts/1/edit, but you need to specify the path to
the image/CSS/JS file

Rails Helpful Links

Creating
Awesome
Websites with
Ruby on Rails

» API documentation and helpful guides:
http://rubyonrails.org

» free eBook about Rails: http://railstutorial.org/book

Creating

Awesome
Websites with
Ruby on Rails

» go make something awesome!

» questions? comments? suggestions?
<tmacwilliam@cs50.net>

	Ruby
	MVC
	Rails

