
Computer Science 50
Fall 2011
Scribe Notes

Week 1 Friday: September 9, 2011
Andrew Sellergren

Contents

1 Announcements and Demos (0:00–7:00) 2

2 From Last Time (7:00–31:00) 2

3 More on C (31:00–53:00) 5
3.1 Operator Precedence and Formatting Strings 5
3.2 Conditions . 6

3.2.1 Boolean Expressions . 7
3.2.2 conditions1.c . 7
3.2.3 conditions2.c . 8
3.2.4 Switches . 9

3.3 Loops . 10

1

Computer Science 50
Fall 2011
Scribe Notes

Week 1 Friday: September 9, 2011
Andrew Sellergren

1 Announcements and Demos (0:00–7:00)

• 0 new handouts.

• Thanks for coming back, all 646 of you! Once again, we’ve hit record
numbers for CS50 enrollment. Let the fun begin! Of course, you do
retain the right to leave the course if you’re truly feeling overwhelmed,
but please listen to David when he implores you to reach out to a member
of the teaching staff before you do so. There’s a good chance we’ll be able
to address your frustrations and fears so that you’ll be able to soldier on!

• You’re invited to CS50 Lunches on Fridays at 1:15 p.m.! These are op-
portunities for you to interact on a more personal level with the teaching
staff, so we hope you’ll take advantage of them.

• To get an idea of just how many people are dedicated to helping you get
through this semester, check out cs50.net/staff.

• A few statistics from the first installment of new-and-improved Office
Hours:

– A total of almost 200 questions were asked, with a peak of about 100
occurring on Tuesday.

– Average wait time ranged from under 25 seconds on Monday to just
over 150 seconds on Tuesday.

• Sectioning starts later today and ends Monday at noon. Supersections,
which are open to all, will be held this Sunday, Monday, and Tuesday.

• This week’s problem set will be our first in C. You’ll be writing a few
programs, the first of which will be nothing more than a “hello, world”
app. The second program will involve solving a greedy counting prob-
lem and the third program will require implementing a crude graph of
isawyouharvard.com statistics. In general, we’ll focus this week on get-
ting comfortable with the syntax in C. If you’re feeling adventurous, try
tackling the Hacker Edition!

• This week’s Walkthrough will be held on Sunday at 7 p.m.

2 From Last Time (7:00–31:00)

• As we transitioned from Scratch to C, we discovered that learning a little
bit of cryptic syntax is all that stands between us and the tremendous
power of a low-level programming language.

• Recall that we set up the CS50 Appliance which allows you to run an op-
erating system within your personal computer’s default operating system.
Once we did so, we opened a program called gedit, a text editor with a
built-in command line that allows us to write, compile, and run our code

2

http://cs50.net/staff
http://isawyouharvard.com

Computer Science 50
Fall 2011
Scribe Notes

Week 1 Friday: September 9, 2011
Andrew Sellergren

all within the same window. If you come to find the command line in gedit
too small for your needs, you can open Terminal for a full-screen version.

• By convention, we saved our C source code file with a .c extension. To
compile our program, we ran the make command followed by the name of
the program, which happened to be hello. Finally, we ran our program
by typing ./hello.

• main is first function we ever wrote. We talked about it as a miniature
program that gets executed as soon as we run our larger program. main

can also call other functions, a fact we made use of in order to print to the
screen using printf, which takes one or more arguments specifying what
is to be printed and how it is to be formatted.

• One advantage, by the way, of saving our file with the .c extension is
that gedit will recognize it as C source code and perform syntax high-
lighting in order to illuminate keywords of the C language and make our
program more readable. By default, it will also perform autocompletion.
For example, it will insert a close parenthesis as soon as we type an open
parenthesis, which can either be helpful or annoying. If you find it annoy-
ing, you can easily disable it in the program’s preferences.

• Once we save our code, we can see that the hello.c file exists by typing
ls in ~/Desktop, where ~ stands for our home directory. Then we type
make hello and ./hello to compile and run our program. Note that we
could run these same commands from the Terminal program as opposed
to within gedit itself.

• In order to make use of functions like printf that were written by other
programmers, we need to reference the libraries that contain their code.
We do this using #include.

• The keyword void was used to denote that main takes no arguments in
this simple program of ours.

• To make our program more interesting, we referenced the CS50 Library
and used a function called GetString in order to retrieve some input from
the user. Let’s do the same this time, except let’s forget the #include

<cs50.h>. This time when we try to compile our program, we’ll get all
sorts of errors. Because errors can compound themselves, you should
always work from the top down to fix them. Here, the first error we see is
as follows:

hello.c:6:5: error: unknown type name ‘string’

Turns out that the string type we introduced to you is not native to
C, but rather is defined in the CS50 Library. Because we forgot the
#include <cs50.h> line, the compiler didn’t know what the keyword
string meant.

3

Computer Science 50
Fall 2011
Scribe Notes

Week 1 Friday: September 9, 2011
Andrew Sellergren

• Once we add back in the reference to the CS50 Library, our program looks
like so:

#include <cs50.h>

#include <stdio.h>

int

main(void)

{

string s = GetString();

printf("O hai, %s", s);

}

When we compile and run this, we see nothing but a blinking cursor at
first, but once we type in a name and hit Enter, we get the output we
expect. To make it a little more user friendly, though, let’s add a line that
prompts for a name:

#include <cs50.h>

#include <stdio.h>

int

main(void)

{

printf("Say your name: ");

string s = GetString();

printf("O hai, %s", s);

}

This time when we run the program, we get. . . a blinking cursor. What
happened? We forgot to recompile our program.

• Incidentally, if you begin executing a program and quickly want to bring
it to an end, hit Ctrl + C to kill it.

• Question: if void specifies that main takes no input, how were we able to
get input from the user? Long story short, there are two types of input.
Our program hello takes no input at the command line, i.e. when it
is first executed. In contrast, make is a program that takes input at the
command line. When we type make hello, we are providing the word
“hello” as an argument to the main function of the make program.

• Question: is all of the whitespace strictly necessary? No, even the inden-
tation isn’t necessary for the program to compile and run. However, it
makes for a more readable program, so we’ll encourage it as part of proper
style throughout the semester. Before Problem Set 1, we’ll ask you to read
a short style guide that will outline best practices.

4

Computer Science 50
Fall 2011
Scribe Notes

Week 1 Friday: September 9, 2011
Andrew Sellergren

• Question: is it necessary to explicitly return 0 at the end of a C program?
No. By default, the program will return 0 once it is finished executing
unless it is instructed to return something else.

• The CS50 Library defines the following functions:

– GetChar

– GetDouble

– GetFloat

– GetInt

– GetLongLong

– GetString

What is a char? A char is a single character which requires 1 byte of
storage. A float is a floating point number or, in other words, a number
with a decimal point. Typically it requires 4 bytes of storage. A double

is identical to a float except that it requires 8 bytes of storage which
thereby allows it to store numbers with greater precision. Generally, an
int requires 4 bytes of storage and a long long requires 8 bytes of storage.
Keep in mind that 1 byte is 8 bits.

• For convenience, we’ve defined two extra types in the CS50 Library: bool
and string. The verb/bool/ type is a formalization of a boolean and can
take either true or false as a value. A string is a sequence of char’s that
together form a word or phrase.

3 More on C (31:00–53:00)

3.1 Operator Precedence and Formatting Strings

• Many of the operators that you’re familiar with from math (e.g. +, −,
∗, /) are identical in C. And, as in arithmetic, there is an order in which
operations are applied. In the world of computer science, this is called
operator precedence. For example, the grouping operator (i.e. parentheses)
has the highest precedence in the C language. Here is a full list of operators
and their precedence.

• As we mentioned earlier, the printf function can take many different
formatting characters. Just a few of them are:

– %c for char

– %d for int

– %f for float

– %lld for long long

– %s for string.

5

https://www.cs50.net/resources/cppreference.com/operator_precedence.html

Computer Science 50
Fall 2011
Scribe Notes

Week 1 Friday: September 9, 2011
Andrew Sellergren

Be sure to use %lld if you want to print out a number larger than a long

can store, lest you get a negative number when you try to print it out with
%d!

3.2 Conditions

• As we mentioned last time, conditions in C look quite similar to conditions
in Scratch:

if (condition)

{

// do this

}

This syntax implies that assuming condition evaluates to true, the code
within the curly braces will be executed. Incidentally, the line beginning
with // is a comment, which is an explanatory note regarding the code.
Multi-line comments require an opening /* and a closing */. We’ll ask you
to comment your code thoroughly this semester as it helps us tremendously
with following along!

• Question: does # work for comments in C? No.

• When we have two forks in the road, we can use if-else:

if (condition)

{

// do this

}

else (condition)

{

// do that

}

We can even handle more than two forks in the road with the if-else if-else
syntax:

if (condition)

{

// do this

}

else if (condition)

{

// do that

}

else

{

6

Computer Science 50
Fall 2011
Scribe Notes

Week 1 Friday: September 9, 2011
Andrew Sellergren

// do this other thing

}

• Question: does gedit correct formatting in C? No, but other tools such
as Eclipse do. We’ll get familiar with these later in the semester. You’re
welcome to use any text editor you choose.

3.2.1 Boolean Expressions

• The following code snippets demonstrate the use of Boolean expressions
in C:

if (condition || condition)

{

// do this

}

if (condition && condition)

{

// do this

}

|| represents “or” and && represents “and.”

3.2.2 conditions1.c

• Let’s actually write some programs using conditions, beginning with conditions1.c:

/**

* conditions1.c

*

* Computer Science 50

* David J. Malan

*

* Tells user if his or her input is positive or negative (somewhat

* innacurately).

*

* Demonstrates use of if-else construct.

***/

#include <cs50.h>

#include <stdio.h>

int

main(void)

{

// ask user for an integer

7

Computer Science 50
Fall 2011
Scribe Notes

Week 1 Friday: September 9, 2011
Andrew Sellergren

printf("I’d like an integer please: ");

int n = GetInt();

// analyze user’s input (somewhat inaccurately)

if (n > 0)

printf("You picked a positive number!\n");

else

printf("You picked a negative number!\n");

}

At the top of this file we have a multi-line comment that we’ve pretty-
printed using a lot of asterisks in order to create the effect of a header.
This, along with the single-line comments scattered throughout the pro-
gram, are matters of good style. You’ll thank yourself if you choose to
comment your code as you write it rather than at the very end since you’re
less likely to wake up the morning after and wonder what the heck your
program does.

• C is a strictly typed language, which means we have to be explicit about
what type each variable is. In this case, since we’re asking the user for an
integer, we must assign it to a variable that has type int.

• It’s worth noting that the line int n = GetInt() actually declares and
initializes the variable n in one step. We could also have written it as
follows:

int n;

n = GetInt();

The important thing is that we initialize the variable, i.e. give it a starting
value, as soon we declare it, i.e. announce its name and type. If we declare
a variable and forget to initialize it, we can run into problems down the
road.

• Notice we can omit the curly braces around our conditional statements so
long as they don’t exceed one line each. Indenting isn’t enough! If you
added another printf line after the first one in the else block, it will
always execute, even if the number is negative.

• But there’s a bug here. Can you spot it? Looks like we’re not properly
handling the case where the user provides the number 0. After all, it’s nei-
ther positive nor negative, but we’re telling the user that it’s negative. We
can fix this by using an else if block as well, as we do in conditions2.c.

3.2.3 conditions2.c

• Let’s fix that bug that caused 0 to be mishandled:

8

Computer Science 50
Fall 2011
Scribe Notes

Week 1 Friday: September 9, 2011
Andrew Sellergren

/**

* conditions2.c

*

* Computer Science 50

* David J. Malan

*

* Tells user if his or her input is positive or negative.

*

* Demonstrates use of if-else if-else construct.

***/

#include <cs50.h>

#include <stdio.h>

int

main(void)

{

// ask user for an integer

printf("I’d like an integer please: ");

int n = GetInt();

// analyze user’s input

if (n > 0)

printf("You picked a positive number!\n");

else if (n == 0)

printf("You picked zero!\n");

else

printf("You picked a negative number!\n");

}

• Question: what happens if we try to provide this program with a floating-
point value? When it doubt, try it out! Turns out the program will ask
you to retry entering an integer. The CS50 Library has a bit of validation
built in here so that GetInt can only get an integer.

• Question: can GetString handle more than one line of text? No. To do
that, we’ll need slightly more sophisticated methods, but by the time we
need this functionality, the training wheels will be off and you’ll be ready
to tackle it on your own!

3.2.4 Switches

• A common theme this semester will be the ability to accomplish a task in
many different, but equally efficient ways. When this is the case, the way
that you choose will often come down to a matter of style. For example,
instead of using the if-else if-else construct, we can use a switch statement
to accomplish the same:

9

Computer Science 50
Fall 2011
Scribe Notes

Week 1 Friday: September 9, 2011
Andrew Sellergren

switch (expression)

{

case i:

// do this

break;

case j:

// do that

break;

default:

// do this other thing

}

Although functionally identical, the switch statement is arguably more
elegant in some cases than the if-else if-else alternative.

3.3 Loops

• for loops take the following general structure:

for (initializations; condition; updates)

{

// do this again and again

}

Within the parentheses after the for keyword, there are three parts. Be-
fore the first semicolon, we are initializing a variable which will be our
iterator or counter, often named i by convention. Between the two semi-
colons, we’re providing a condition which, if true, will cause another iter-
ation of the loop to be executed. Finally, we provide code to update our
iterator.

• Let’s write a simple loop to demonstrate how they’re used:

#include <cs50.h>

#include <stdio.h>

int

main(void)

{

int n = GetInt();

for (int i = 0; i < n; i++)

printf("%d\n", i);

}

Here our iterator is named i and it will be incremented (increased by 1)
on every iteration of the loop until it reaches a number n provided by the
user. On every iteration of the loop, the current value of i is printed out.
So we’ve written a counting program!

10

Computer Science 50
Fall 2011
Scribe Notes

Week 1 Friday: September 9, 2011
Andrew Sellergren

• What if the user provides a negative value? The program won’t print
anything because i is already greater than n.

• What if we made a mistake and wrote the threshold of our loop as i > n

instead of i < n? Our program would run (almost) forever!

• Let’s change the updates section of our loop to increase the value faster
than one at a time:

#include <cs50.h>

#include <stdio.h>

int

main(void)

{

int n = GetInt();

for (int i = 0; i > n; i *= 2)

printf("%d\n", i);

}

This fancy syntax just multiplies i by 2 on every iteration of the loop.

• When we run this version of the program, it just prints out 0 on every
line. Oops, 0 ∗ 2 = 0 so we need a different starting value for i. Once we
change it to 1, the program works as intended.

• Very quickly, this program terminates. Why? Once it reached a value
above 2 billion, the largest number an 32-bit integer1 can store, i actually
became negative. One of the bits in this integer is actually reserved for
storing the sign of the integer, so once we filled that in with a 1, our
program interpreted i as being negative and suddenly i was no longer
greater than n and the loop terminated.

• In addition to for loops, there are while loops in C:

while (condition)

{

// do this again and again

}

• For some fine, try downloading, compiling, and running thadgavin.c,
available on the course website!

1A signed 32-bit integer, that is.

11

	Announcements and Demos (0:00–7:00)
	From Last Time (7:00–31:00)
	More on C (31:00–53:00)
	Operator Precedence and Formatting Strings
	Conditions
	Boolean Expressions
	conditions1.c
	conditions2.c
	Switches

	Loops

