
Computer Science 50
Fall 2011
Scribe Notes

Week 1 Wednesday: September 7, 2011
Andrew Sellergren

Contents

1 Announcements and Demos (0:00–6:00) 2

2 From Last Time (6:00–14:00) 2

3 From Scratch To C (14:00–24:00) 3

4 Introduction to C (24:00–76:00) 5
4.1 Writing, Compiling, and Executing 5
4.2 Some Jargon . 8

1

Computer Science 50
Fall 2011
Scribe Notes

Week 1 Wednesday: September 7, 2011
Andrew Sellergren

1 Announcements and Demos (0:00–6:00)

• 0 new handouts.

• Problem Set 0 is due at noon tomorrow! You need to upload your project
to MIT’s website and also fill out this form.

• Don’t forget about Walkthroughs on Sunday nights at 33 Oxford Street!
Sometimes we have trouble getting everyone’s ID card activated to get
into the building, so if you find yourself locked out, dial 617-BUG-CS50
and hit the secret option 0 to get in touch with one of the TFs.

• Post your questions to help.cs50.net.

• Office Hours will be held tonight. When you arrive, point your web
browser to queue.cs50.net, answer a few questions about the reason for
your visit, and virtually raise your hand! The CS50 Greeter will then pair
you with a TF and your browser will begin to flash when it’s your turn to
be helped.

• Scribe Notes are here for your viewing pleasure! If you’re reading this,
then you’re already benefiting from my ability to turn David into a pretty
PDF document.

• Full transcripts of the lectures are also available alongside the videos. In
the interest of saving paper, we don’t print many hard copies of the slides
and source code used in lecture, but they’re available online in advance of
class.

• Sectioning will commence this weekend. More on that during Friday’s
lecture.

• Ever wondered what that big honkin’ contraption is in a glass case in
the Science Center? It’s the Harvard Mark I, a computer used by Harvard
starting in 1944. It was capable of doing computations up to 23 significant
digits and weighed 10,000 pounds. Multiplication took 6 seconds, division
took 15.3 seconds, and a logarithmic or trigonometric function took over
1 minute.

2 From Last Time (6:00–14:00)

• Recall from last time that ASCII is a mapping from binary numbers to al-
phabetic characters, symbols, punctuation, etc. The letter A, for example,
can be expressed in binary as 01000001, or 65 in decimal.

• To hammer this point home, we’ll bring eight volunteers on stage, one each
to represent the digits of a byte. The rightmost volunteer represents the
1’s column and the leftmost volunteer represents the 128’s column with
the rest filling in for the other columns in between. When a volunteer

2

http://cs50.net/psets/0/
http://help.cs50.net
http://queue.cs50.net
http://en.wikipedia.org/wiki/Harvard_Mark_I

Computer Science 50
Fall 2011
Scribe Notes

Week 1 Wednesday: September 7, 2011
Andrew Sellergren

raises his hand, it represents a 1 in the corresponding column. After three
rounds of this, we can represent the numbers 66, 79, and 87, which spells
out the word B-O-W.

• To reiterate our words of wisdom from last week: you’re not the only one
who feels “less comfortable” with the world of computer science. A few
pieces of advice: start your problem sets early and don’t be afraid to walk
away from them when you get frustrated. It’s amazing how many bugs
you’ll solve just by giving yourself some time and space to breathe.

3 From Scratch To C (14:00–24:00)

• Although it may not seem like it at first, C is actually a relatively simple
language. You’ll be able to learn it within a few weeks.

• Recall our first C program from last week:

#include <stdio.h>

int

main(void)

{

printf("O hai, world!\n");

}

The blue “say” puzzle piece from Scratch has now become printf and the
orange “when green flag clicked” puzzle piece has become main(void).

• The “forever” loop from Scratch can be recreated with a while (true)

block. This syntax purposefully induces an infinite loop. Whatever is
within the parentheses is the while condition. As long as that condition
evaluates to “true,” the code within the while loop executes. Since the
keyword true is always “true,” the code within the loop always executes.
A while loop is denoted in C between curly braces like so:

while (true)

{

printf("O hai!\n");

}

• The “repeat” loop from Scratch is equivalent to a for loop in C that looks
like so:

for (int i = 0; i < 10; i++)

{

printf("O hai!\n");

}

3

Computer Science 50
Fall 2011
Scribe Notes

Week 1 Wednesday: September 7, 2011
Andrew Sellergren

This syntax declares an integer named i (a convention used for variables
that are only used for counting) which is set to 0 to begin with. i < 10

implies that the code within the loop will execute as long as i is less than
10. Finally, on each iteration of the loop, the statement i++ increments i
by one. All in all, this code causes “O hai!” to be printed 10 times.

• In C, a loop that increments a variable and announces its value would look
like so:

int counter = 0;

while (true)

{

printf("%d\n", counter);

counter++;

}

Here we declare a variable named counter and then create an infinite loop
that prints its value then increments it.

• Boolean expressions are much the same in C as in Scratch. The less-than
(<) and greater-than (>) operators are the same. One difference is that
the “and” operator is represented as && in C.

• Conditions in C look much the same as they do in Scratch:

if (x < y)

{

printf("x is less than y\n");

}

else if (x > y)

{

printf("x is greater than y\n");

}

else

{

printf("x is equal to y\n");

}

• Recall that we used a variable called “inventory” in Scratch to store a series
of related variables—fruits in the case of FruitcraftRPG. This inventory
can be implemented as an array in C:

string inventory[1];

inventory[0] = "Orange";

We’ll discuss strings in more depth in the coming weeks, but think of them
for now just as words. Here we have an array that stores only one item,
the word “Orange.” The first line of code above creates the array and the
second line of code above stores the word in the array’s single bucket.

4

Computer Science 50
Fall 2011
Scribe Notes

Week 1 Wednesday: September 7, 2011
Andrew Sellergren

• Know that, by convention, computer scientists start counting from 0.
That’s why the first and only element in the array above is the 0th el-
ement. This is also why last week was Week 0 and you’ll be turning in
Problem Set 0 tomorrow.

4 Introduction to C (24:00–76:00)

• In our first C program, we wrote a few cryptic words, among them int

main(void). We can gloss over this for now, but know that this is telling
the compiler that our main function (which is comparable to the “when
green flag clicked” puzzle piece in Scratch), will return an integer value
when it finishes executing. If you’ve ever seen an error on your home
computer that has a number associated with it, chances are that this
number is the return value of that program’s main function in whatever
language it was written in. This return value allows a programmer to
know which failure his program exited with. 0 means everything finished
normally. The void tells the compiler that our program takes no input.
The final cryptic word in this program is printf, which is a function that
prints words to the screen. You can think of a function as a miniature
program that takes input and produces output.

4.1 Writing, Compiling, and Executing

• To write programs in C, we’ll need the help of a text editor. For now, we’ll
just use TextEdit on the Mac, but we could use any number of programs,
including Eclipse, Nano, Vim, Emacs, and even Microsoft Word. Once we
write our very simple C program,

#include <stdio.h>

int

main(void)

{

printf("O hai, world!\n");

}

we save and exit. What we’ve written isn’t exactly 0’s and 1’s that the
computer can understand, so we need something that will translate the
human-readable C language into machine-readable binary. We could use
Xcode or Visual Studio or some other compiler for this, but in the interest
of standardizing these tools across all the different operating systems used
by students, we’re instead introducing the CS50 Appliance. As we hinted
earlier, this software is a virtual machine that allows you to run an instance
of the Linux operating system within whatever operating system your
personal computer runs.

5

Computer Science 50
Fall 2011
Scribe Notes

Week 1 Wednesday: September 7, 2011
Andrew Sellergren

• To install the CS50 Appliance, you’ll first need to download and install
VirtualBox, which allows you to administer multiple virtual operating
system instances on your computer. Because computers these days are
actually quite overpowered, we can take advantage of their spare resources
in order to run virtual machines. When we open VirtualBox and double
click CS50 Appliance, a window will open that resembles the desktop of
a Mac or a PC, perhaps with different names for menus and icons. Now
we can click the CS50 Menu in the bottom left and choose gedit, a text
editor very similar to TextEdit on a Mac or Notepad on a PC.

• As before, we’ll write the program above, this time saving it on the Desk-
top as hello.c. The .c extension is a convention for programs written
in C. Within our gedit window, at the bottom, there is a line that begins
with jharvard@appliance (~): and has a blinking prompt. This is the
command line for Linux. The command line allows us to execute programs
by typing their names and hitting Enter rather than double clicking them.
By default, we’ve given everyone the username jharvard, short for John
Harvard.

• At the command line, we’ll type the command ls, short for list, and see
the following output:

jharvard@appliance (~): ls

Desktop lectures

jharvard@appliance (~):

This tells us that in your home directory, which is comparable to the My
Documents folder on Windows or the Documents folder on Mac OS, there
are two directories, or folders, named Desktop and lectures. Recall that
we saved our program on the desktop, so we need to navigate there in
order to compile and run it. To do this, we run this command:

jharvard@appliance (~): cd Desktop

jharvard@appliance (~/Desktop): ls

hello.c

jharvard@appliance (~/Desktop):

cd stands for change directory. Within the parentheses, we are reminded
that we are currently in the Desktop, a subdirectory of the home directory
which is represented by the ~.

• Now to compile our program. At the command line, we’ll pass our source
code file into a compiler named GCC (GNU Compiler Collection) like so:

jharvard@appliance (~/Desktop): gcc hello.c

jharvard@appliance (~/Desktop):

6

Computer Science 50
Fall 2011
Scribe Notes

Week 1 Wednesday: September 7, 2011
Andrew Sellergren

The fact that nothing happened when we ran this command is actually a
good sign: it means there were no errors in compiling the program. Now
when we check the contents of our Desktop, we see an extra file has been
created:

jharvard@appliance (~/Desktop): ls

a.out hello.c

a.out is the default name for a program created by GCC. To run it, we’ll
simply type its name at the command line:

jharvard@appliance (~/Desktop): ./a.out

O hai, world!

jharvard@appliance (~/Desktop):

Woohoo, our first program ran! Incidentally, the ./ tells Linux to look
for the program within our current directory, represented by a dot. If this
were a built-in program in Linux, we wouldn’t need to tell it where to
look.

• a.out isn’t a very descriptive name for our program, so let’s modify our
compiler command to name its output more appropriately:

jharvard@appliance (~/Desktop): gcc -o hello hello.c

The -o is a flag or a switch or an option passed to GCC to tell it the name
we’d like it to give to its output, in this case hello. Now we can execute
the same program by running ./hello.

• For the first of many Linux tricks you’ll learn this semester, know that
you can press the up and down arrows to scroll through the list of your
previously run commands.

• Remembering which options to execute GCC with every time we run it
would be a huge pain. Thankfully, there’s another program we can use to
compile our code: make. We run it like so:

jharvard@appliance (~/Desktop): make hello

make: ‘hello’ is up to date.

make knows to look for the source code file hello.c and turn it into
a program named hello even without being passed any non-standard
options. It also prints us a user-friendly message telling us that hello

doesn’t need to be recompiled because it’s already “up to date.”

• If we want to recompile hello anyway, we need to remove the previous
output. We do this with the rm command:

7

Computer Science 50
Fall 2011
Scribe Notes

Week 1 Wednesday: September 7, 2011
Andrew Sellergren

jharvard@appliance (~/Desktop): rm hello a.out

rm: remove regular file ‘hello’? y

rm: remove regular file ‘a.out’? y

jharvard@appliance (~/Desktop): ls

hello.c

rm will prompt us if we really want to delete the files we just specified and
when we type y, it will actually remove them. Now we have nothing but
hello.c left in our Desktop directory. When we run make now, we get
the following:

jharvard@appliance (~/Desktop): make hello

gcc -ggdb -std=c99 -Wall -Werror hello.c -lcs50 -lm -o hello

As you can see, make is actually running gcc in the background with a few
extra options that we’ve told it to pass by default. More on these options
later. As before, we can run ./hello to execute our program.

• Question: by convention, directories and executable programs are high-
lighted in bold by the ls command.

• The CS50 Appliance is a full-fledged operating system in and of itself.
We can click on the Firefox icon and browse the web within the virtual
machine just as we would on any other computer.

• Question: how did make know what the name of our source code file was?
Because we told it to compile hello, it looked for a source code file named
hello.c by default. In the coming weeks, we’ll set up make to use aliases
so we can compile multiple files when we specify a keyword.

• Question: what would happen if we tried to run make hello.c? In short,
we’ll get an error message saying there’s “nothing to be done” for this file.

• Question: do the files we create within the Appliance exist anywhere on
our actual operating system? No, not as separate files. They are all housed
within a single, large .vmdk file. However, throughout the semester, we’ll
have multiple ways of interacting with this environment aside from this
Appliance.

• Know that the Appliance can be run even without an internet connection!

4.2 Some Jargon

• Functions are the term we’ll use to denote miniature programs within
our programs. Just like a mathematical function, these take one or more
inputs, which we’ll call arguments, and return some output. The first
function we wrote was called main. In our first program, we passed
‘‘O hai, world!\n’’ as an argument to printf. The \n is a charac-
ter which denotes a new line.

8

Computer Science 50
Fall 2011
Scribe Notes

Week 1 Wednesday: September 7, 2011
Andrew Sellergren

• C has a number of primitive types built into it. These include int, char,
float, and more. int is the integer type which stores numbers using
4 bytes or 32 bits of memory. How many numbers can we store using
4 bytes? Each bit has 2 possible values, so in total, we can store 232, or
around 4 billion, numbers. Generally, this means we can store the numbers
from negative 2 billion to positive 2 billion. Note that there are serious
consequences to this storage space being finite. Once we count up past
2 billion, we’re going to run into problems with the int type. To store
numbers this large, we’ll need more bits. This is where the notion of 64-bit
integers, namely a long long, will come in handy.

• float is the floating point type which can store decimals. Here too finite
storage space presents a problem. One third represented as a decimal
translates into an infinite number of 3’s after the decimal point. We obvi-
ously can’t represent an infinite number of digits with finite storage space,
so at some point we’re going to have to cut it off. This can lead to serious
miscalculations. Think back to the Y2K bug which was caused by using
only enough storage space to represent two of the digits in the year rather
than the full four.

• It turns out that taking input from the user is actually a somewhat com-
plicated process in C. Because we feel that you should begin your exposure
to C with more interesting tasks, we’ve written some functions to accom-
plish this for you. These are available to you in the CS50 library which
lives at cs50.h:

– GetChar

– GetDouble

– GetFloat

– GetInt

– GetLongLong

– GetString

These functions get input of different types (e.g. characters, doubles,
floats, integers) from the user as he enters them on the keyboard.

• If we wanted to make our program from earlier slightly more interesting,
we could make use of the CS50 Library like so:

#include <cs50.h>

#include <stdio.h>

int

main(void)

{

printf("Name please: ");

9

Computer Science 50
Fall 2011
Scribe Notes

Week 1 Wednesday: September 7, 2011
Andrew Sellergren

string s = GetString();

printf("%s\n", s);

}

GetString is going to do the work of parsing the user’s input and passing
it back to us so that we can store it in a variable named s. We’re then
going to pass this variable s as a second argument to printf, which we’ll
substitute it in where the %s is.

• What’s the deal with the include lines? These lines tell the compiler
to make use of other libraries of code within our program. The standard
library is stdio.h, which allows us to use the printf function. Similarly,
including the cs50.h header file allows us to use GetString which is
defined in the CS50 Library.

• Now when we compile and run our program, typing “David” when prompted
for a name, we get something like the following:

jharvard@appliance (~/Desktop): make hello

gcc -ggdb -std=c99 -Wall -Werror hello.c -lcs50 -lm -o hello

jharvard@appliance (~/Desktop): ./hello

Name please: David

David

• Next, let’s try prompting the user for a number instead of a name:

#include <cs50.h>

#include <stdio.h>

int

main(void)

{

printf("Number please: ");

float f = GetFloat();

printf("%.10f\n", f);

}

Now we’re calling the GetFloat function and storing its return value in a
variable with type float. We’ve also changed the format string that we
pass to printf. The %.10f tells printf to substitute in a floating-point
value and to print 10 digits after the decimal point. After compiling and
running the program, providing the number 0.1, we get the following:

jharvard@appliance (~/Desktop): ./hello

Number please: 0.1

0.1000000015

10

Computer Science 50
Fall 2011
Scribe Notes

Week 1 Wednesday: September 7, 2011
Andrew Sellergren

Weird. We definitely didn’t type that. What this demonstrates is the
inherent imprecision of floating points. We only have a finite number of
bits, so some rounding has to be done in certain cases.

• Don’t think that floating point imprecision is a big deal? Check out this
video to be convinced otherwise.

11

http://www.youtube.com/watch?v=EMVBLg2MrLs
http://www.youtube.com/watch?v=EMVBLg2MrLs

	Announcements and Demos (0:00–6:00)
	From Last Time (6:00–14:00)
	From Scratch To C (14:00–24:00)
	Introduction to C (24:00–76:00)
	Writing, Compiling, and Executing
	Some Jargon

