
Computer Science 50
Fall 2011
Scribe Notes

Week 10 Monday: November 7, 2011
Andrew Sellergren

Contents

1 Announcements and Demos (0:00–4:00) 2

2 JavaScript (4:00–54:00) 2
2.1 HTTP Response Codes . 2
2.2 Comparison to Other Programming Languages 2
2.3 Events . 4
2.4 Form Validation . 5

2.4.1 form1.html . 5
2.4.2 form2.html . 6
2.4.3 form3.html . 9
2.4.4 form4.html . 11
2.4.5 form5.html . 12
2.4.6 form6.html . 14
2.4.7 form7.html . 17

3 Words of Wisdom from Jocelyn Goldfein (54:00–82:00) 17

1

Computer Science 50
Fall 2011
Scribe Notes

Week 10 Monday: November 7, 2011
Andrew Sellergren

1 Announcements and Demos (0:00–4:00)

• Sign up now for CS50 Seminars! The “Develop for the Blackbery. . . Like
A Boss,” hosted by Jason Hirschorn (pumpkin) and Marta Bralic (cloud).

• If you’re interested in helping out with some applications to improve cam-
pus life, consider signing up for Hack Harvard.

• This week is all about CS50 Shuttle. This game uses the Google Earth
API to allow you to drive the Harvard shuttle around campus, picking up
teaching fellows and dropping them off at their destinations. Try typing
in the Konami Code into the staff solution.

• This week we will introduce you to JavaScript, a client-side, interpreted
programming language. JavaScript is the language that powers the Google
Earth API and thus CS50 Shuttle.

2 JavaScript (4:00–54:00)

2.1 HTTP Response Codes

• Recall that along with the response, web servers return an HTTP status
code such as one of the following:

– 401 - unauthorized

– 403 - forbidden

– 404 - not found

– 500 - internal server error

If we create a new file named foo.html in our public_html directory, but
forget to chmod it so that it is world-readable, then navigating to it in our
browser will result in a HTTP 403 error. With Firebug’s Net tab enabled
(similar to Live HTTP Headers), we see that there’s a Status column that
shows “403 Forbidden” in red.

2.2 Comparison to Other Programming Languages

• No longer do we need a main function, as any function can be called within
a script tag in our HTML.

• Conditions, Boolean expressions, switches, loops are the same in JavaScript
as they are in PHP.

• Variables in JavaScript look slightly different than in PHP. As in PHP,
variables don’t need an explicit type. Instead of the $, though, we use the
keyword var:

var s = "hello, world";

2

http://hackharvard.org/app
http://shuttle.cs50.net

Computer Science 50
Fall 2011
Scribe Notes

Week 10 Monday: November 7, 2011
Andrew Sellergren

Implicity, s will be a string type.

• Conveniently, arrays can be instantiated using square bracket notation like
so:

var numbers = [4, 8, 15, 16, 23, 42];

• The foreach construct from PHP is equivalent to the following in JavaScript:

for (element in array)

{

// do this with element

}

• One of the biggest selling points of JavaScript is a technology called Ajax
which will delve into later today. Ajax makes use of JavaScdript Ob-
ject Notation (JSON) to communicate with a web server. Objects in
JavaScript are implemented as follows:

var student = {

id: 123,

house: "Mather House",

name: "David Malan"

};

Notice that JavaScript objects are functionally similar to C structs, but
are syntactically simpler. By itself, a single object like this might not be
compelling, but consider an array of objects:

var students = [

{

id: 123,

house: "Mather House",

name: "David Malan"

},

{

id: 456,

house: "Mather House",

name: "Tommy MacWilliam"

}

];

Using this syntax, we don’t need a new type or even specify a name for
objects that we create on the fly.

3

Computer Science 50
Fall 2011
Scribe Notes

Week 10 Monday: November 7, 2011
Andrew Sellergren

• Recall from a few weeks ago the concept of the Document Object Model
(DOM), a tree structure used to represent the HTML of webpage:

When a browser downloads an HTML document, it parses it hierarchi-
cally as this diagram would suggest. If an open tag is encountered within
another open tag, the second tag is considered to be a child of the first
tag. This tree structure can be very easily traversed and manipulated
using JavaScript.

• To begin to comprehend the power of JavaScript, consider the Facebook
homepage. When you first login and view your News Feed, the Facebook
web server is only able to send to your browser the updates that have
occurred prior to your login. And yet, if you hang around long enough,1

you’ll see status updates pop up periodically. If you haven’t refreshed your
page, then how has Facebook sent you these updates? Using JavaScript.

2.3 Events

• Think back to Week 0 when we saw events in the context of Scratch. We
implemented a simple game of Marco Polo by having one sprite broad-
cast an event—saying “Marco”—which another sprite listened for and
responded to—saying “Polo.” So too in JavaScript do we have the notion

1Very, very long in David’s case.

4

Computer Science 50
Fall 2011
Scribe Notes

Week 10 Monday: November 7, 2011
Andrew Sellergren

of events. In fact, each of the HTML elements we’ve examined so far has
some number of events associated with it. If we want to respond to these
events, we can implement event handlers, some of which are named below:

– onblur

– onchange

– onclick

– onfocus

– onkeydown

– onkeyup

– onload

– onmousedown

– onmouseup

– onmouseout

– onmouseover

– onmouseup

– onresize

– onselect

– onsubmit

If you want to implement a popup that displays when a user hovers over
an image, you might use the onmouseover handler, for example. You can
also detect keystrokes, page loads, form submissions, and more. With
JavaScript, you can do almost anything!2

2.4 Form Validation

2.4.1 form1.html

• form1.html demonstrates a standard HTML login form that has no client-
side validation:

<!--

form1.html

A form without client-side validation.

Computer Science 50

David J. Malan

2Anything at all.

5

http://html5zombo.com/

Computer Science 50
Fall 2011
Scribe Notes

Week 10 Monday: November 7, 2011
Andrew Sellergren

-->

<!DOCTYPE html>

<html>

<head>

<title>form1</title>

</head>

<body>

<form action="dump.php" method="get">

Email: <input name="email" type="text">

Password: <input name="password1" type="password">

Password (again): <input name="password2" type="password">

I agree to the terms and conditions: <input name="agreement" type="checkbox">

<input type="submit" value="Submit">

</form>

</body>

</html>

That is, a user can input almost anything as his e-mail and password and
the form will submit to the back end. Of course, the back end might have
some validation built in so that if a malformed e-mail address is passed,
the form submission will fail and the user will be bounced back to the
input page. It would be nice, however, if instead of going through the
trouble of clicking Submit and waiting for the HTTP response indicating
a submission error, the user could be warned that his inputs are wrong.
This is where JavaScript comes in.

2.4.2 form2.html

• form2.html introduces the client-side validation that we just discussed:

<!--

form2.html

A form with client-side validation.

Computer Science 50

David J. Malan

-->

6

Computer Science 50
Fall 2011
Scribe Notes

Week 10 Monday: November 7, 2011
Andrew Sellergren

<!DOCTYPE html>

<html>

<head>

<script>

function validate()

{

if (document.forms.registration.email.value == "")

{

alert("You must provide an email adddress.");

return false;

}

else if (document.forms.registration.password1.value == "")

{

alert("You must provide a password.");

return false;

}

else if (document.forms.registration.password1.value !=

document.forms.registration.password2.value)

{

alert("You must provide the same password twice.");

return false;

}

else if (!document.forms.registration.agreement.checked)

{

alert("You must agree to our terms and conditions.");

return false;

}

return true;

}

</script>

<title>form2</title>

</head>

<body>

<form action="dump.php" method="get" name="registration"

onsubmit="return validate();">

Email: <input name="email" type="text">

Password: <input name="password1" type="password">

Password (again): <input name="password2" type="password">

I agree to the terms and conditions: <input name="agreement" type="checkbox">

7

Computer Science 50
Fall 2011
Scribe Notes

Week 10 Monday: November 7, 2011
Andrew Sellergren

<input type="submit" value="Submit">

</form>

</body>

</html>

Here we see that a new attribute of the form tag is defined: onsubmit. As
you might guess, it controls what happens when the form is actually sub-
mitted. In this case, we’re calling a JavaScript function named validate.
The onsubmit attribute, according to the W3C’s specification of HTML,
can take actual JavaScript code as its value. If this code evaluates to true,
then the form will be submitted. Otherwise, the form will not submit.
We’re relying on the validate function to evaluate to true if the form
inputs are valid and to evaluate to false otherwise.

• At the top, in the head element, we have our script tag.3

• Within validate, the first if condition checks for a blank e-mail field.
We do this by accessing a global object named document that is provided
to us natively in JavaScript. document is actually a kind of object or
struct which contains the entire hierarchy of the page’s content. You
can infer from these if conditions that the document object has within it
an object named forms which contains all of the page’s form elements.
Within document, we access forms followed by the registration form in
particular. Notice that registration corresponds to the value we gave
to the name attribute of our form. Finally we access the value attribute
of the email field. If this value is the empty string, then we call a built-in
function called alert which pops up a window. After this window pops
up, we return false, which is important to ensure that the form doesn’t
actually submit.

• In the next conditions, we check for a blank password field and for non-
matching password fields. Then we access the checked property of the
checkbox field to make sure that it has been clicked. Note that we can use
the == operator to compare strings, unlike in C.

• Question: do you need to specify the return type of a JavaScript function?
No. It is loosely typed, just like PHP. In fact, you can return multiple
different types within the same function, if you want.

• Question: could else if be replaced by if in the logic above? Yes,
because each if condition has a return statement within it, so multiple
conditions will never be executed.

3Incidentally, the script tag can be placed elsewhere on the page other than in the head

element. There are good reasons one might do so and we’ll see examples of it later in the
course.

8

Computer Science 50
Fall 2011
Scribe Notes

Week 10 Monday: November 7, 2011
Andrew Sellergren

• Question: when validate returns false, is the form cleared? No, it is left
as is, another advantage of doing client-side validation.

• So why bother with server-side validation if client-side validation is so sim-
ple and elegant? As it turns out, users can disable JavaScript in almost
every major browser with a few clicks of the mouse. If a malicious user
were to do this, he could get past all your client-side validation. Thus if
you have no server-side validation, he could have a field day with your
form. Just as importantly, not every browser fully supports JavaScript—
the BlackBerry browser being a good example. When you’re developing
a website, then, you need to consider what users you might be alienat-
ing if you choose to implement functionality which absolutely requires
JavaScript.

• Still, client-side validation is very compelling for its speed. These days,
many users are interacting with websites on mobile devices which don’t
always have super fast internet connections. Providing users with quick
feedback is all the easier if you don’t have to make unnecessary calls to
the server.

• Question: is there a way to detect if the user has disabled JavaScript?
Yes. You might, for example, attempt to assign a cookie to a user and
later check if the assignment succeeded. If it didn’t, it might be because
the user has JavaScript disabled.

2.4.3 form3.html

• form3.html improves upon form2.html by simplifying the validation code:

<!--

form3.html

A form with client-side validation demonstrating "this" keyword.

Computer Science 50

David J. Malan

-->

<!DOCTYPE html>

<html>

<head>

<script>

function validate(f)

9

Computer Science 50
Fall 2011
Scribe Notes

Week 10 Monday: November 7, 2011
Andrew Sellergren

{

if (f.email.value == "")

{

alert("You must provide an email adddress.");

return false;

}

else if (f.password1.value == "")

{

alert("You must provide a password.");

return false;

}

else if (f.password1.value != f.password2.value)

{

alert("You must provide the same password twice.");

return false;

}

else if (!f.agreement.checked)

{

alert("You must agree to our terms and conditions.");

return false;

}

return true;

}

</script>

<title>form3</title>

</head>

<body>

<form action="dump.php" method="get" onsubmit="return validate(this);">

Email: <input name="email" type="text">

Password: <input name="password1" type="password">

Password (again): <input name="password2" type="password">

I agree to the terms and conditions: <input name="agreement" type="checkbox">

<input type="submit" value="Submit">

</form>

</body>

</html>

This incarnation of validate takes a single argument instead of none.
The argument that is passed to validate is the actual form object itself.
We achieve this by writing validate(this) in the onsubmit attribute.
The value of this will change from context to context. Here, it stands for

10

Computer Science 50
Fall 2011
Scribe Notes

Week 10 Monday: November 7, 2011
Andrew Sellergren

the form object.

2.4.4 form4.html

• form4.html demonstrates a clever use of the disabled property:

<!--

form4.html

A form with client-side validation demonstrating disabled property.

Computer Science 50

David J. Malan

-->

<!DOCTYPE html>

<html>

<head>

<script>

function toggle()

{

if (document.forms.registration.button.disabled)

document.forms.registration.button.disabled = false;

else

document.forms.registration.button.disabled = true;

}

function validate()

{

if (document.forms.registration.email.value == "")

{

alert("You must provide an email adddress.");

return false;

}

else if (document.forms.registration.password1.value == "")

{

alert("You must provide a password.");

return false;

}

else if (document.forms.registration.password1.value !=

document.forms.registration.password2.value)

{

11

Computer Science 50
Fall 2011
Scribe Notes

Week 10 Monday: November 7, 2011
Andrew Sellergren

alert("You must provide the same password twice.");

return false;

}

else if (!document.forms.registration.agreement.checked)

{

alert("You must agree to our terms and conditions.");

return false;

}

return true;

}

</script>

<title>form4</title>

</head>

<body>

<form action="dump.php" method="get" name="registration"

onsubmit="return validate();">

Email: <input name="email" type="text">

Password: <input name="password1" type="password">

Password (again): <input name="password2" type="password">

I agree to the terms and conditions: <input name="agreement"

onclick="toggle();" type="checkbox">

<input disabled="disabled" name="button" type="submit" value="Submit">

</form>

</body>

</html>

In this version of our login form, the Submit button isn’t clickable until
the checkbox has been checked. We achieve this by initially setting the
disabled attribute of the checkbox to the value disabled.4 Then, we
assign a JavaScript function toggle to be the listener for the click event
(via the onclick attribute) on the checkbox. Whenever the checkbox is
checked, the toggle function will be called. If the checkbox is checked,
the disabled attribute of the Submit button will be set to false.

2.4.5 form5.html

• form5.html makes use of regular expressions to check that the user’s input
matches certain expected patterns:

4Yes, it’s a stupid convention.

12

Computer Science 50
Fall 2011
Scribe Notes

Week 10 Monday: November 7, 2011
Andrew Sellergren

<!--

form5.html

A form with client-side validation demonstrating regular expressions.

Computer Science 50

David J. Malan

-->

<!DOCTYPE html>

<html>

<head>

<script>

function validate()

{

if (!document.forms.registration.email.value.match(/.+@.+\.edu$/))

{

alert("You must provide a .edu email adddress.");

return false;

}

else if (document.forms.registration.password1.value == "")

{

alert("You must provide a password.");

return false;

}

else if (document.forms.registration.password1.value !=

document.forms.registration.password2.value)

{

alert("You must provide the same password twice.");

return false;

}

else if (!document.forms.registration.agreement.checked)

{

alert("You must agree to our terms and conditions.");

return false;

}

return true;

}

</script>

<title>form5</title>

</head>

13

Computer Science 50
Fall 2011
Scribe Notes

Week 10 Monday: November 7, 2011
Andrew Sellergren

<body>

<form action="dump.php" method="get" name="registration"

onsubmit="return validate();">

Email: <input name="email" type="text">

Password: <input name="password1" type="password">

Password (again): <input name="password2" type="password">

I agree to the terms and conditions: <input name="agreement" type="checkbox">

<input type="submit" value="Submit">

</form>

</body>

</html>

In JavaScript, many variable types have built-in methods. Strings, for
example, have a built-in match method that returns true if the string
matches the particular regular expression, or pattern, provided as input.
Here we’re checking if the user-inputted e-mail address contains an @ sym-
bol and ends in .edu. The . character is a wildcard and + denotes “one or
more,” so .+ translates to “one or more of any character.” The \. means
a literal dot character: the backslash escapes it so as to distinguish it from
the wildcard character. The $ signifies “ends with,” i.e. that the .edu

comes at the absolute end of the string. You can use ^ to signify “starts
with.” Of course, this regular expression isn’t all that rigorous since many
invalid e-mail addresses will match it, but at least it’s a start. There are
libraries available that do this kind of e-mail address validation right out
of the box. Be careful, though: you don’t want to use a regular expres-
sion that is so strict as to exclude e-mail addresses that have subdomains,
as some forms do. David, for one, has experienced this when trying to
register with his post.harvard.edu e-mail address.

2.4.6 form6.html

• form6.html introduces the jQuery library:

14

Computer Science 50
Fall 2011
Scribe Notes

Week 10 Monday: November 7, 2011
Andrew Sellergren

<!--

form6.html

A form with client-side validation demonstrating jQuery.

Computer Science 50

David J. Malan

-->

<!DOCTYPE html>

<html>

<head>

<script src="http://code.jquery.com/jquery-latest.js"></script>

<script>

$(document).ready(function() {

$("#registration").submit(function() {

if (!$("#email").val().match(/.+@.+\.edu$/))

{

alert("You must provide a .edu email adddress.");

return false;

}

else if ($("#password1").val() == "")

{

alert("You must provide a password.");

return false;

}

else if ($("#password1").val() != $("#password2").val())

{

alert("You must provide the same password twice.");

return false;

}

else if (!$("#agreement").attr("checked"))

{

alert("You must agree to our terms and conditions.");

return false;

}

return true;

});

});

</script>

<title>form6</title>

15

Computer Science 50
Fall 2011
Scribe Notes

Week 10 Monday: November 7, 2011
Andrew Sellergren

</head>

<body>

<form action="dump.php" id="registration" method="get">

Email: <input id="email" name="email" type="text">

Password: <input id="password1" name="password1" type="password">

Password (again): <input id="password2" name="password2" type="password">

I agree to the terms and conditions:

<input id="agreement" name="agreement" type="checkbox">

<input type="submit" value="Submit">

</form>

</body>

</html>

jQuery is a third-party JavaScript library that greatly simplifies the syntax
for many common operations in the language. As the example above
demonstrates, jQuery makes the accessing of DOM nodes and form fields
much less tedious. To begin using jQuery, we link to it by providing its
URL as the src attribute of a script tag. We can actually navigate to
this URL in our browser and view the source code that we’re importing.
Many commonly used JavaScript features come built in to jQuery so that
when you want to use something like autocomplete, you don’t have to
implement it yourself.

• The first thing to notice in form6.html is that our JavaScript is no longer
intermingled with our HTML. All of the function calls are within the
script tag. This is good design because it allows us to stay organized
and better understand what’s going on in our code. Before this script

tag in which we write our own JavaScript, we must import jQuery in a
separate script tag so that its functions will be available to us.

• To access the DOM using jQuery, we write $(document) instead of just
document. This allows us to make use of some methods that jQuery adds
to the plain old document object. Here, we’re calling the ready method
of the jQuery document object. This method executes by default when
the entire page has loaded and is thus “ready.” When we call ready we
pass it a single argument which takes the form of a lambda function. The
syntax function() {...} defines a function without a name, otherwise
known as a lambda function or an anonymous function. Since we’re never
going to call this function in any other context, we don’t need to give it a
name that we can reference later. By passing this lambda function to the
ready method, we tell jQuery to call it when the ready method is called,
i.e. when the page has fully loaded.

16

Computer Science 50
Fall 2011
Scribe Notes

Week 10 Monday: November 7, 2011
Andrew Sellergren

• The HTML in form6.html is slightly different from previous incarnations
in that we defined the id attribute, not the name attribute, of the form

element. Having done so, we can immediately access the form element by
writing $("#registration") using jQuery’s syntax. The form element
that is returned by jQuery has a special submit method that is called
when this form is submitted. As before with the ready method, we pass
an anonymous function that we want to be executed when this happens.
This anonymous function is what does the actual validation of the user’s
input. To do this validation, we use the # syntax again to grab the form
fields and the val method to access their values.

• To carry the decoupling of HTML and JavaScript one step further, we
can write our JavaScript code in a separate file and import it just as we
imported the jQuery source code. In general, this is good design.

2.4.7 form7.html

• For our last trick, we’ll call one jQuery function to validate our entire
form. Play around with it for yourself!

3 Words of Wisdom from Jocelyn Goldfein (54:00–82:00)

• Please welcome Jocelyn Goldfein, Director of Engineering at Facebook!
Tune in to the lecture video to hear her words of wisdom.

17

	Announcements and Demos (0:00–4:00)
	JavaScript (4:00–54:00)
	HTTP Response Codes
	Comparison to Other Programming Languages
	Events
	Form Validation
	form1.html
	form2.html
	form3.html
	form4.html
	form5.html
	form6.html
	form7.html

	Words of Wisdom from Jocelyn Goldfein (54:00–82:00)

