
Computer Science 50
Fall 2011
Scribe Notes

Week 10 Wednesday: November 9, 2011
Andrew Sellergren

Contents

1 Announcements and Demos (0:00–7:00) 2

2 JavaScript (7:00–60:00) 2
2.1 Resurrecting the blink Tag . 2
2.2 Ajax . 4

2.2.1 ajax1.html . 6
2.2.2 quote1.php . 9
2.2.3 ajax2.html . 10
2.2.4 ajax3.html . 12
2.2.5 quote2.php . 15
2.2.6 ajax4.html . 16
2.2.7 quote3.php . 18
2.2.8 ajax5.html . 19
2.2.9 ajax6.html . 22

3 Web-based Final Project Tips and Tricks (60:00–73:00) 24
3.1 vhosts . 24
3.2 APIs . 24
3.3 Authenticating Users . 25
3.4 Sending Mail . 25
3.5 Sending Texts . 25

1

Computer Science 50
Fall 2011
Scribe Notes

Week 10 Wednesday: November 9, 2011
Andrew Sellergren

1 Announcements and Demos (0:00–7:00)

• Wow, we’re almost done! Next week, we have lecture on Monday, Quiz 1
on Wednesday, lecture the following Monday, and that’s it! You’re almost
there!

• Stay tuned to the course website for details on Quiz 1. Know that it’s
cumulative, so you can’t forget everything you learned in Week 0!

• Our apologies for the problems some of you have experienced with the
Google Earth plugin for Problem Set 8!1 If you’ve had trouble with it,
check out the front of the course website for a link to a post that David
made that will hopefully address your issues. In order to help diagnose
the problem, try quitting as many programs as possible, including the
Appliance, since the plugin is very memory-intensive.

• A word on submit50: there was a bug which David didn’t anticipate.2

We appreciate your patience, as with a course this size, we are bound to
run into every kind of technical issue imaginable.

• Apply now to be a TF or CA for next year’s course! We’ll try to hold
interviews in January and finalize the staff by Spring Break.

• Hopefully you enjoyed Monday when we were joined in lecture by Joce-
lyn Goldfein and on campus by Mark Zuckerberg! Consider this: Mark
released Facebook in February, 2004. By the end of 2004, it had 1 million
users and by the end of 2005, it had 5.5 million users. Mark never actually
took CS50, but spoke at one of its lectures in 2005. In it, he highlighted
the importance of having a foundation in a language like C which enabled
he and his roommates to pick up other languages like PHP very quickly.

2 JavaScript (7:00–60:00)

• JavaScript is an entirely client-side programming language. When Face-
book was first released, it didn’t have many of the features it has today
(e.g. chat, realtime updates), most of which are based in JavaScript.

2.1 Resurrecting the blink Tag

• Much to our chagrin, the blink tag was retired from HTML. Thankfully,
it can be resurrected sing JavaScript:

1I filed a bug internally for this!
2Is there ever a bug which someone anticipate? If there is and you don’t tell me about it,

I will be highly displeased.

2

http://cs50.net/apply

Computer Science 50
Fall 2011
Scribe Notes

Week 10 Wednesday: November 9, 2011
Andrew Sellergren

<!--

blink.html

Resurrects the blink tag.

Computer Science 50

David J. Malan

-->

<!DOCTYPE html>

<html>

<head>

<script>

function blinker()

{

var blinks = document.getElementsByTagName("blink");

for (var i = 0; i < blinks.length; i++)

{

if (blinks[i].style.visibility == "hidden")

blinks[i].style.visibility = "visible";

else

blinks[i].style.visibility = "hidden";

}

}

window.setInterval(blinker, 500);

</script>

<title>blink</title>

</head>

<body>

<div style="margin: 240px; text-align: center">

<blink><h1>hello, world</h1></blink>

</div>

</body>

</html>

Although we’re using the blink tag here, most browsers won’t actually
recognize it and support its previous functionality. So we take care of it
ourselves using a function named blinker.

• As a sidenote, realize that you don’t need the Appliance in order to pro-

3

Computer Science 50
Fall 2011
Scribe Notes

Week 10 Wednesday: November 9, 2011
Andrew Sellergren

gram, especially after you exit this course. It is, however, useful to be able
to run a different operating system within you computer’s native operat-
ing system. Still, you might opt for a much more lightweight solution of
programming from vi or emacs or nano within a terminal window such as
Terminal on a Mac or PuTTY on a Windows PC.

• To program from a terminal window on your own computer, you can
ssh into jharvard@192.168.56.50 which is the default address of the
Appliance. This is representative of how you can get started with a project
after this course: instead of the Appliance, you might ssh into a server
hosted by a third-party company with MySQL, PHP, and more installed.
Once we’ve done so, we can open blink.html using Nano or Vim, two
free text editors.

• Inside blinker, we call a method named getElementsByTagName. As
its name implies, this will retrieve all the tags within our HTML source
whose name matches the argument we pass, in this case “blink.” Once we
have all the blink tags, we loop through them and toggle the visibility
attribute of their style between “hidden” and “visible.” This attribute
is actually a CSS rule, which can also be altered with JavaScript.

• After defining the blinker function, we use a method named setInterval

of the window object to dictate that it will be called every 500 milliseconds.
Notice that the first argument we pass to setInterval is blinker, not
blinker(). The latter would cause the blinker function to actually be
called when it was passed as an argument. The former acts as a pointer
to the function. Once we’ve registered blinker to be called every 500
milliseconds, the CSS of the blink tag will be toggled regularly.

• Question: what if you specified the visibility attribute of the blink tag
in a separate CSS file? The JavaScript would override that specification.

• The connection here to technologies that Facebook uses is that status up-
dates and new chat messages can be pulled from the server regularly using
JavaScript. Facebook most likely doesn’t use the setInterval function,
since it would hammer their servers with hundreds of millions of request.
Rather, they use a technique called long polling which opens connections
to the server that last for 30 seconds or more. Likewise does Google use
this technique in order to look for new messages in your inbox.

2.2 Ajax

• The technology that Google and Facebook use to poll their servers for
updates is called Ajax, visualized in the diagram below:

4

Computer Science 50
Fall 2011
Scribe Notes

Week 10 Wednesday: November 9, 2011
Andrew Sellergren

In step 1, the Google and Facebook user interfaces make a JavaScript call.
In step 2, a special JavaScript object called an XMLHttpRequest object is
created which, in step 3, makes an HTTP request to the web server. This
diagram indicates that, in step 4, XML data is returned by the server.
However, these days, this data can also be in JSON (JavaScript object
notation) format. XML is a data format that is something like “make
your own HTML.” Instead of using predetermined tag names, you can
create your own like so:

<class>

<students>

<student id="123">

<name>David</name>

</student>

</students>

</class>

XML is handy in that you can codify both data and metadata. The data
here is the ID number 123 and the name David. The metadata is the tag
names: class, students, name, etc.

• Although it is useful in certain circumstances, XML is not always good in
the context of Ajax because it requires a large number of bytes to represent
very little information. JSON, on the other hand, is quite compact. We
can represent the same data from the above XML using JSON like so:

5

Computer Science 50
Fall 2011
Scribe Notes

Week 10 Wednesday: November 9, 2011
Andrew Sellergren

[

{

name: "David",

id: 123

}

]

We can also easily add more student data like so:

[

{

name: "David",

id: 123

},

{

name: "Matt",

id: 456

}

]

JSON format is generally much more convenient than XML not only be-
cause it is more compact, but it is easier to generate. There exist built-in
functions in PHP (e.g. json_encode) and many other languages, for ex-
ample, that can convert arrays and objects to JSON.

2.2.1 ajax1.html

• Take a look at ajax1.html, our first foray into Ajax:

<!--

ajax1.html

Gets stock quote from quote1.php via Ajax, displaying result with alert().

Computer Science 50

David J. Malan

-->

<!DOCTYPE html>

<html>

<head>

<script>

6

Computer Science 50
Fall 2011
Scribe Notes

Week 10 Wednesday: November 9, 2011
Andrew Sellergren

// an XMLHttpRequest

var xhr = null;

/*

* void

* quote()

*

* Gets a quote.

*/

function quote()

{

// instantiate XMLHttpRequest object

try

{

xhr = new XMLHttpRequest();

}

catch (e)

{

xhr = new ActiveXObject("Microsoft.XMLHTTP");

}

// handle old browsers

if (xhr == null)

{

alert("Ajax not supported by your browser!");

return;

}

// construct URL

var url = "quote1.php?symbol=" + document.getElementById("symbol").value;

// get quote

xhr.onreadystatechange = handler;

xhr.open("GET", url, true);

xhr.send(null);

}

/*

* void

* handler()

*

* Handles the Ajax response.

*/

function handler()

{

7

Computer Science 50
Fall 2011
Scribe Notes

Week 10 Wednesday: November 9, 2011
Andrew Sellergren

// only handle loaded requests

if (xhr.readyState == 4)

{

// display response if possible

if (xhr.status == 200)

alert(xhr.responseText);

else

alert("Error with Ajax call!");

}

}

</script>

<title>ajax1</title>

</head>

<body>

<form onsubmit="quote(); return false;">

Symbol: <input id="symbol" type="text">

<input type="submit" value="Get Quote">

</form>

</body>

</html>

From reading the comments, we know that this file will get a stock quote
from a file called quote1.php via Ajax. In the HTML, we see that there is
a form whose onsubmit attribute calls a JavaScript function named quote

and then returns false no matter what. Why might we want to do that?
Since we’re retrieving data via Ajax, we don’t actually need to submit the
form anymore. We’re using the submit button just to know when the user
has finished inputting information. Indeed, when we visit ajax1.html in
our browser, type GOOG into the form field, and click Get Quote, we see
a JavaScript alert window that displays “605.93,” the current stock price
of Google, even though the form hasn’t actually been submitted and the
URL has not changed.

• We can visualize the data retrieved from the server using Firebug’s Net
tab. When we click Submit, we see that a GET request was made to
quote1.php?symbol=GOOG. We know again that this request was asyn-
chronous (the first “A” in Ajax) because the URL in the browser address
bar didn’t change.

• How do we make this Ajax request? First, we initialize a global variable
named xhr by trying to create a new XMLHttpRequest object. Unfor-
tunately, this won’t work in Internet Explorer because Microsoft decided
that their particular flavor of this object would be called an ActiveXOb-
ject. For that reason, we use the try-catch syntax, which attempts to

8

Computer Science 50
Fall 2011
Scribe Notes

Week 10 Wednesday: November 9, 2011
Andrew Sellergren

execute the try block and only executes the catch block if the try block
fails for some reason.

• After we’ve initialized xhr, we check for null just in case the user is run-
ning a browser that doesn’t support Ajax. Next we’re dynamically cre-
ating a URL which we’re going to request from the server. In a GET
variable named symbol, we’re appending the value the user has entered
into the text box. We are accessing this value by invoking a method called
getElementById, which, as you might’ve guessed, searches for an HTML
element whose id attribute we specify. In this case, we’ve given the text
box an id of symbol, so that’s what we’re searching for.

• The three lines at the bottom of quote are the ones which actually re-
trieve the stock quote. First, via the onreadystatechange attribute, we’re
telling xhr that once its done making its request, call a function named
handler that we will write ourselves. The last two lines actually open
a connection to the server and send the data. If you wanted to use the
POST method, you would specify POST as the first argument to open

and you would pass the actual data as the argument to send, rather than
null. Passing true as the last argument to open indicates that we want
the request to be asynchronous. We’ll wave our hands for now at this last
argument.

• Within the handler function, we are checking two properties of the xhr

object: readyState and status. First, we check readyState to find if
the request has been sent successfully and second, we check status, to
see if the server has returned a response of OK. If both of those checks
are passed, then we access the responseText of the object and display it
via an alert window.

2.2.2 quote1.php

• So let’s actually see what this URL will return if we access it directly.
If we navigate to quote1.php?symbol=GOOG, we get back nothing but a
stock quote—no HTML markup, even. It is our handler function which
will be manipulating this directly.

• Looking at the source code of quote1.php, we can see that it’s fairly
simple and borrowed almost entirely from Problem Set 7:

<?

/**

* quote1.php

*

* Outputs price of given symbol as text/html.

*

9

Computer Science 50
Fall 2011
Scribe Notes

Week 10 Wednesday: November 9, 2011
Andrew Sellergren

* Computer Science 50

* David J. Malan

*/

// get quote

$handle = @fopen("http://download.finance.yahoo.com/d/quotes.csv?" .

"s={$_GET["symbol"]}&f=e1l1", "r");

if ($handle !== FALSE)

{

$data = fgetcsv($handle);

if ($data !== FALSE && $data[0] == "N/A")

print($data[1]);

fclose($handle);

}

?>

From this code, we can tell that the script does nothing but access a Yahoo
Finance URL and print out the response. This is why we don’t have any
HTML markup, since nothing but the actual text of the stock quote is
being printed.

2.2.3 ajax2.html

• Slightly more sophisticated than an alert window would be to embed the
response in the actual HTML of the webpage. Check out ajax2.html:

<!--

ajax2.html

Gets stock quote from quote1.php via Ajax, embedding result in page itself.

Computer Science 50

David J. Malan

-->

<!DOCTYPE html>

<html>

<head>

<script>

// an XMLHttpRequest

var xhr = null;

10

Computer Science 50
Fall 2011
Scribe Notes

Week 10 Wednesday: November 9, 2011
Andrew Sellergren

/*

* void

* quote()

*

* Gets a quote.

*/

function quote()

{

// instantiate XMLHttpRequest object

try

{

xhr = new XMLHttpRequest();

}

catch (e)

{

xhr = new ActiveXObject("Microsoft.XMLHTTP");

}

// handle old browsers

if (xhr == null)

{

alert("Ajax not supported by your browser!");

return;

}

// construct URL

var url = "quote1.php?symbol=" + document.getElementById("symbol").value;

// get quote

xhr.onreadystatechange = handler;

xhr.open("GET", url, true);

xhr.send(null);

}

/*

* void

* handler()

*

* Handles the Ajax response.

*/

function handler()

{

// only handle loaded requests

if (xhr.readyState == 4)

{

11

Computer Science 50
Fall 2011
Scribe Notes

Week 10 Wednesday: November 9, 2011
Andrew Sellergren

// embed respose in page if possible

if (xhr.status == 200)

document.getElementById("price").innerHTML = xhr.responseText;

else

alert("Error with Ajax call!");

}

}

</script>

<title>ajax2</title>

</head>

<body>

<form onsubmit="quote(); return false;">

Symbol: <input id="symbol" type="text">

Price: to be determined

<input type="submit" value="Get Quote">

</form>

</body>

</html>

Where the stock price will go, we have an element of type span. This
is similar to a div in that we can put almost anything inside it, but a
div, being a block-level element, takes up the whole width of the window
whereas a span, being an inline element, does not.

• In this version, when we click Get Quote, the text “to be determined”
gets replaced by the actual stock quote. Interestingly, even after the stock
quote is displaced, if we view the web page’s source, we see that the span

still contains the text “to be determined.” JavaScript can change what’s
displayed by the browser, but it doesn’t change what was originally sent
by the server. We can use Firebug, however, to see changes to the DOM.

• The only difference between the JavaScript in ajax2.html and that in
ajax1.html is the handler function. Now when the Ajax request returns
successfully, we’re changing the innerHTML property of the price element
rather than popping up an alert window. innerHTML initially holds the
text “to be determined” (within a b tag) which we will clobber with the
stock price we just looked up.

2.2.4 ajax3.html

• In ajax3.html, we make our presentation of stock data ever so slightly
sexier:

12

Computer Science 50
Fall 2011
Scribe Notes

Week 10 Wednesday: November 9, 2011
Andrew Sellergren

<!--

ajax3.html

Gets stock quote (plus day’s low and high) from quote2.php via Ajax,

embedding result in page itself after indicating progress with an

animated GIF.

Computer Science 50

David J. Malan

-->

<!DOCTYPE html>

<html>

<head>

<script>

// an XMLHttpRequest

var xhr = null;

/*

* void

* quote()

*

* Gets a quote.

*/

function quote()

{

// instantiate XMLHttpRequest object

try

{

xhr = new XMLHttpRequest();

}

catch (e)

{

xhr = new ActiveXObject("Microsoft.XMLHTTP");

}

// handle old browsers

if (xhr == null)

{

alert("Ajax not supported by your browser!");

return;

}

13

Computer Science 50
Fall 2011
Scribe Notes

Week 10 Wednesday: November 9, 2011
Andrew Sellergren

// construct URL

var url = "quote2.php?symbol=" + document.getElementById("symbol").value;

// show progress

document.getElementById("progress").style.display = "block";

// get quote

xhr.onreadystatechange = handler;

xhr.open("GET", url, true);

xhr.send(null);

}

/*

* void

* handler()

*

* Handles the Ajax response.

*/

function handler()

{

// only handle requests in "loaded" state

if (xhr.readyState == 4)

{

// hide progress

document.getElementById("progress").style.display = "none";

// embed response in page if possible

if (xhr.status == 200)

document.getElementById("quote").innerHTML = xhr.responseText;

else

alert("Error with Ajax call!");

}

}

</script>

<title>ajax3</title>

</head>

<body>

<form onsubmit="quote(); return false;">

Symbol: <input id="symbol" type="text">

<div id="progress" style="display: none">

14

Computer Science 50
Fall 2011
Scribe Notes

Week 10 Wednesday: November 9, 2011
Andrew Sellergren

</div>

<div id="quote"></div>

<input type="submit" value="Get Quote">

</form>

</body>

</html>

• In this version, when we click Get Quote, a fake progress bar is displayed
(the animation is built into the GIF and doesn’t actually indicate how
close the request is to completion) for a few seconds before the stock data
appears.

• In the actual HTML source, we see that the progress bar GIF is actually
already embedded. But because the div which contains it has its CSS
property display set to none, it won’t actually be visible when the page is
first loaded. If we examine the JavaScript, we see that it’s almost identical
to ajax2.html, except for two lines, one in the quote function which sets
the display property to block, and one in the handler function which
sets this display property back to none. This is how we show and hide
the GIF when the user clicks Get Quote and when the stock data returns
from the server, respectively.

2.2.5 quote2.php

• We’re also displaying more than just the stock price at this point. Let’s
take a look at how we do that in quote2.php:

<?

/**

* quote2.php

*

* Outputs price, low, and high of given symbol as text/html, after

* inserting an artificial delay.

*

* Computer Science 50

* David J. Malan

*/

// pretend server is slow

sleep(5);

// try to get quote

$handle = @fopen("http://download.finance.yahoo.com/d/quotes.csv?" .

15

Computer Science 50
Fall 2011
Scribe Notes

Week 10 Wednesday: November 9, 2011
Andrew Sellergren

"s={$_GET["symbol"]}&f=e1l1hg", "r");

if ($handle !== FALSE)

{

$data = fgetcsv($handle);

if ($data !== FALSE && $data[0] == "N/A")

{

print("Price: {$data[1]}");

print("
");

print("High: {$data[2]}");

print("
");

print("Low: {$data[3]}");

}

fclose($handle);

}

?>

You can see that instead of simply returning a single number, quote2.php
is actually spitting out some HTML. This HTML is what we will dynam-
ically insert into ajax3.html when the Ajax call returns successfully. No-
tice also that we were faking some of the server slowness by calling sleep

to cause the script to wait for 5 seconds so that our progress bar would
have some time to display.

• Incidentally, the curly braces surrounding $data tell PHP that it is a
variable that should be replaced with its value.

2.2.6 ajax4.html

• Having a function named handler in our previous examples feels a little
sloppy because we’re only using this function once. As an alternative, we
might define it as an anonymous function and assign it directly as the
state change event handler for our Ajax request, as we do in ajax4.html:

<!--

ajax4.html

Gets stock quote from quote1.php via Ajax, displaying result with alert().

Implements handler as an anonymous function.

Computer Science 50

David J. Malan

-->

<!DOCTYPE html>

16

Computer Science 50
Fall 2011
Scribe Notes

Week 10 Wednesday: November 9, 2011
Andrew Sellergren

<html>

<head>

<script>

// an XMLHttpRequest

var xhr = null;

/*

* void

* quote()

*

* Gets a quote.

*/

function quote()

{

// instantiate XMLHttpRequest object

try

{

xhr = new XMLHttpRequest();

}

catch (e)

{

xhr = new ActiveXObject("Microsoft.XMLHTTP");

}

// handle old browsers

if (xhr == null)

{

alert("Ajax not supported by your browser!");

return;

}

// construct URL

var url = "quote1.php?symbol=" + document.getElementById("symbol").value;

// get quote

xhr.onreadystatechange = function () {

// only handle loaded requests

if (xhr.readyState == 4)

{

// display response if possible

if (xhr.status == 200)

alert(xhr.responseText);

else

alert("Error with Ajax call!");

}

17

Computer Science 50
Fall 2011
Scribe Notes

Week 10 Wednesday: November 9, 2011
Andrew Sellergren

};

xhr.open("GET", url, true);

xhr.send(null);

}

</script>

<title>ajax4</title>

</head>

<body>

<form onsubmit="quote(); return false;">

Symbol: <input id="symbol" type="text">

<input type="submit" value="Get Quote">

</form>

</body>

</html>

This way of structuring our code certainly has its appeal as its more
compact and yet still readable. The code within the function is actually
identical to what it was in handler in ajax1.html.

2.2.7 quote3.php

• In quote3.php, we create an associative array with values corresponding
to the price, the high, and the low for a given stock symbol:

<?

/**

* quote3.php

*

* Outputs price, low, and high of given symbol as JSON.

*

* Computer Science 50

* David J. Malan

*/

// try to get quote

$quote = array();

$handle = @fopen("http://download.finance.yahoo.com/d/quotes.csv?" .

"s={$_GET["symbol"]}&f=e1l1hg", "r");

if ($handle !== FALSE)

{

$data = fgetcsv($handle);

if ($data !== FALSE && $data[0] == "N/A")

{

18

Computer Science 50
Fall 2011
Scribe Notes

Week 10 Wednesday: November 9, 2011
Andrew Sellergren

$quote["price"] = $data[1];

$quote["high"] = $data[2];

$quote["low"] = $data[3];

}

fclose($handle);

}

header("Content-type: application/json");

print(json_encode($quote));

?>

Once we do a quick sanity check on the return values from Yahoo’s server,
we create an associative array with keys of price, high, and low. Passing
this array to the json_encode function will create a JavaScript object
with properties of the same names. The syntax for this object might look
something like the following:

{"price":"26.50","high":"26.75","low":"26.44"}

To make it a little more readable, we can clean it up as follows:

{

"price": 26.50,

"high": 26.75,

"low": 26.44

}

2.2.8 ajax5.html

• In ajax5.html, we make use of the JSON-encoded response returned by
the server:

<!--

ajax5.html

Gets stock quote (plus day’s low and high) from quote3.php via Ajax,

embedding (JSON) result in page itself.

Computer Science 50

David J. Malan

-->

<!DOCTYPE html>

19

Computer Science 50
Fall 2011
Scribe Notes

Week 10 Wednesday: November 9, 2011
Andrew Sellergren

<html>

<head>

<script>

// an XMLHttpRequest

var xhr = null;

/*

* void

* quote()

*

* Gets a quote.

*/

function quote()

{

// instantiate XMLHttpRequest object

try

{

xhr = new XMLHttpRequest();

}

catch (e)

{

xhr = new ActiveXObject("Microsoft.XMLHTTP");

}

// handle old browsers

if (xhr == null)

{

alert("Ajax not supported by your browser!");

return;

}

// construct URL

var url = "quote3.php?symbol=" + document.getElementById("symbol").value;

// get quote

xhr.onreadystatechange = function() {

// only handle requests in "loaded" state

if (xhr.readyState == 4)

{

// embed response in page if possible

if (xhr.status == 200)

{

var quote = eval("(" + xhr.responseText + ")");

document.getElementById("price").innerHTML = quote.price;

20

Computer Science 50
Fall 2011
Scribe Notes

Week 10 Wednesday: November 9, 2011
Andrew Sellergren

document.getElementById("high").innerHTML = quote.high;

document.getElementById("low").innerHTML = quote.low;

}

else

alert("Error with Ajax call!");

}

};

xhr.open("GET", url, true);

xhr.send(null);

}

</script>

<title>ajax5</title>

</head>

<body>

<form onsubmit="quote(); return false;">

Symbol: <input id="symbol" type="text">

Price:

High:

Low:

<input type="submit" value="Get Quote">

</form>

</body>

</html>

We have three span elements with unique id’s, each of which will be filled
with corresponding data from our Ajax request. We access the JSON data
as follows:

var quote = eval("(" + xhr.responseText + ")");

document.getElementById("price").innerHTML = quote.price;

document.getElementById("high").innerHTML = quote.high;

document.getElementById("low").innerHTML = quote.low;

The eval function takes the JSON string and creates a corresponding
object in memory. Then we can access the price, high, and low attributes
of the resulting object, quote.

21

Computer Science 50
Fall 2011
Scribe Notes

Week 10 Wednesday: November 9, 2011
Andrew Sellergren

2.2.9 ajax6.html

• ajax6.html uses the jQuery library we introduced on Monday to accom-
plish the same Ajax requests we’ve been making in the previous examples:

<!--

ajax6.html

Gets stock quote (plus day’s low and high) from quote3.php via Ajax

using jQuery, embedding (JSON) result in page itself.

Computer Science 50

David J. Malan

-->

<!DOCTYPE html>

<html>

<head>

<script src="http://code.jquery.com/jquery-latest.js"></script>

<script>

$(document).ready(function() {

$("#form").submit(function() {

$.ajax({

url: "quote3.php",

data: {

symbol: $("#symbol").val()

},

success: function(data) {

$("#price").html(data.price);

$("#high").html(data.high);

$("#low").html(data.low);

}

});

return false;

});

});

</script>

<title>ajax6</title>

</head>

<body>

<form id="form">

22

Computer Science 50
Fall 2011
Scribe Notes

Week 10 Wednesday: November 9, 2011
Andrew Sellergren

Symbol: <input id="symbol" type="text">

Price:

High:

Low:

<input type="submit" value="Get Quote">

</form>

</body>

</html>

One huge advantage of using the jQuery library is reducing the amount of
code we have to write ourselves. Notice that we no longer have a need for
try-catch syntax to handle different browsers or even a handler function
to check for the correct response status and act accordingly. Instead, we
have a single function call (with a few other function calls nested within).

• As on Monday, we’re calling the ready method of the $(document) object,
jQuery’s version of the DOM that has some additional useful methods.
The ready method is called automatically when the page has loaded. To
this ready method, we pass an anonymous function in which we grab the
HTML element with an id of form (using the $ syntax again) and call its
submit method. Incidentally, the $ notation is some slickness on the part
of jQuery’s developers. $ in JavaScript is a valid character for function
names, so $ is actually the name of a function defined in the jQuery library.
We pass to the submit method another anonymous function which will be
called when the form is submitted. This innermost anonymous function
is what actually makes the Ajax request and handles the response.

• jQuery has a special function called ajax which does the heavy lifting for
making Ajax requests. To use it, we pass a JavaScript object which has
certain attributes, including url, data, and success in this case. url is
the URL which we’ll be requesting data from. data is an object which
encompasses the parameters we want to send to this URL, in this case
the stock symbol the user has provided in the HTML element whose id

is symbol. success is a function (which takes a single argument) that
will be called when the Ajax request returns successfully: this takes the
place of handler that was previously assigned to the onreadystatechange
attribute of the XMLHttpRequest object. The argument that is passed to
the anonymous success function3 is assumed to be in JSON format, so
jQuery automatically evaluates it and creates a corresponding JavaScript
object. Thus, we can right away access its price, high, and low attributes

3We’ve called it data, but we can actually call it anything we want.

23

Computer Science 50
Fall 2011
Scribe Notes

Week 10 Wednesday: November 9, 2011
Andrew Sellergren

just as we did in ajax5.html. In order to inject HTML into the span

elements as before, we can simply call the html function defined by jQuery.

3 Web-based Final Project Tips and Tricks (60:00–73:00)

3.1 vhosts

• During development, you’ve been accessing your source code on your lo-
cal machines via the Appliance. However, for Problem Set 7 and Prob-
lem Set 8, the submission instructions provide you with a way to up-
load your code to the CS50 Cloud so that it is accessible publicly. Hav-
ing followed these instructions, you can visit your websites at URLs like
http://cloud.cs50.net/~username/pset7/.

• Even this URL isn’t very user-friendly, however. If you want a web address
like http://isawyouharvard.com for your Final Project, you should fol-
low the instructions here. These instructions walk you through the process
of registering for a domain name via a registrar like GoDaddy and pointing
its nameservers (which tell users’ web browsers what the actual IP address
of the website is) to the CS50 Cloud, where your code will actually live.
At term’s end, we’ll ask you to move your code off the CS50 Cloud, but
at that time, you’ll be able to easily upload it to a host of your choosing.

3.2 APIs

• To help you with your Final Project, we’ve made available a number of
APIs for accessing Harvard-related data:

– HarvardCourses API

– HarvardEvents API

– HarvardFood API

– HarvardMaps API

– HarvardNews API

– HarvardTweets API

– Shuttleboy API

The HarvardFood API, for example, allows you to retrieve dining hall
menu data in a variety of formats, including CSV, JSON, JSONP, and
PHP.

• For help with manipulating the data that is returned by these APIs, check
out the CS50 Manual’s entry on parsing.

• The HarvardFood API employs a method known as screen scraping in
order to retrieve dining hall menu data. This is somewhat of a last resort
for sites such as HUDS that don’t have a proper API. What we’ve done for

24

http://manual.cs50.net/vhost
http://manual.cs50.net/HarvardFood_API
http://manual.cs50.net/Parsing

Computer Science 50
Fall 2011
Scribe Notes

Week 10 Wednesday: November 9, 2011
Andrew Sellergren

you is written a program that runs daily and pretends to be a web browser,
navigates to the HUDS menu site, and parses its HTML for menu items,
nutritional information, and portion sizes. We then store this data in
our own databases so that you can access it via our server. If you need
to grab data from a site that doesn’t have an API, you can follow the
tutorial here to replicate what we’ve done for the HarvardFood API. We
warn you that this should only be used as a last resort because it’s not a
very robust solution: if HUDS decides to change their website, our API
will most likely break.

3.3 Authenticating Users

• The CS50 Manual entry on authenticating users should prove useful to
you if you plan on requiring users to login to use your website. This year
we offer our own authentication service called CS50 ID which will do the
heavy lifting of authenticating Harvard affiliates and will hand you back
a unique identifier for each user for use in your application.

3.4 Sending Mail

• Sending e-mail from within Harvard’s firewall is not the easiest thing in
the world4 because TCP/IP port 25, the default mail port, is blocked.
Our documentation should make this a little easier for you and even de-
scribes how to use the PHPMailer library to leverage Harvard’s own SMTP
(outgoing mail) server.

3.5 Sending Texts

• Want to send texts like Shuttleboy? Check out the documentation here.

• To demonstrate his creepiness, David has opted to use this knowledge to
send everyone in CS50 a text asking why they aren’t in class.

4The easiest thing in the world is beating David in Wii Tennis.

25

http://manual.cs50.net/Screen_Scraping
http://manual.cs50.net/Authenticating_Users
http://manual.cs50.net/Sending_Mail
http://manual.cs50.net/Sending_Texts

	Announcements and Demos (0:00–7:00)
	JavaScript (7:00–60:00)
	Resurrecting the blink Tag
	Ajax
	ajax1.html
	quote1.php
	ajax2.html
	ajax3.html
	quote2.php
	ajax4.html
	quote3.php
	ajax5.html
	ajax6.html

	Web-based Final Project Tips and Tricks (60:00–73:00)
	vhosts
	APIs
	Authenticating Users
	Sending Mail
	Sending Texts

