
Computer Science 50
Fall 2011
Scribe Notes

Week 2 Monday: September 12, 2011
Andrew Sellergren

Contents

1 Announcements and Demos (0:00–1:00, 50:00–60:00) 2

2 From Last Time (1:00–3:00) 3

3 Bugs (3:00–15:00) 4
3.1 buggy1.c . 4
3.2 buggy2.c . 5
3.3 math1.c . 6
3.4 math3.c . 6

4 More Programming Constructs (15:00–50:00) 8
4.1 nonswitch.c and switch1.c . 8
4.2 positive1.c . 10
4.3 positive2.c . 12
4.4 positive3.c . 12
4.5 progress1.c . 13
4.6 progress2.c . 14
4.7 progress3.c . 15

5 Typecasting (60:00–73:00 16
5.1 ascii1.c . 16
5.2 ascii2.c . 17
5.3 battleship.c . 18
5.4 beer1.c . 19

1

Computer Science 50
Fall 2011
Scribe Notes

Week 2 Monday: September 12, 2011
Andrew Sellergren

1 Announcements and Demos (0:00–1:00, 50:00–60:00)

• If you’ve already dived into Problem Set 1, you’ve probably encountered
one or more bugs. The very first bug was, in fact, a real bug—a moth that
got stuck in the Harvard Mark II and was subsequently preserved inside
the log book. This is where the term “bug” actually comes from.

• Don’t forget to RSVP if you’re interested in CS50 Lunch!

• Please return your Scratch board if you still have one from Problem Set
0.

• Sectioning needs to be done by 5 p.m. today!

• Supersections will be held today and tomorrow at 6 p.m., locations to be
announced on the course website. The video from last night’s supersection
is available online.

• Some interesting statistics:

– 33% of you own an iPhone, 17% of you own an Android device, 13% of
you own a Blackberry, and 33% own a “normal” or non-smartphone.

– 39% of you have AT&T, 36% of you have Verizon, 15% of you have
T-Mobile.

– Sophomores have the highest representation as a class among you, as
does Adams as a house.

– 56% of you are running Mac OS, 41% of you are running Windows.

– Interestingly, this year for the first year, those “less comfortable” are
the majority. You’re definitely not alone!

– 54% of you have no prior programming experience.

• Check out the manual for the CS50 Appliance before you ask your question
at Office Hours or on help.cs50.net. If you’re using a PC and you find
the Appliance so slow as to be unusable, follow the instructions here to
see if it’s because your computer’s manufacturer has turned off hardware
virtualization by default.

• Our aim is to give you as much qualitative feedback as possible on your
work in CS50. Grades will be broken down as follows:

– scope – how much of the problem set did you actually attempt?

– correctness – does your code do what it’s supposed to?

– design – is your code efficient and elegant?

– style – is your code readable and well-commented?

You’ll be given a score of 1 (poor) through 5 (best) for each of these axes.
Early in the semester, the expected range is 2-3, not so much 4-5. 3 is
actually good, it does not translate to 60%!

2

http://americanhistory.si.edu/collections/object.cfm?key=35&objkey=30
http://cs50.net/rsvp
http://manual.cs50.net/Appliance
https://manual.cs50.net/Virtualization

Computer Science 50
Fall 2011
Scribe Notes

Week 2 Monday: September 12, 2011
Andrew Sellergren

• A word on academic honesty, which we take very seriously in this course.
Over the past four years, we have sent 37 students to the Ad Board.
We’d like to never have to send another one. For your convenience, our
policy is spelled out very clearly on the second page of every problem
set we release. It describes in detail the line between collaboration and
plagiarism, which essentially boils down to one guideline: don’t talk in
real code. If you want to discuss ideas or specific problems, feel free to
go so far as to write out pseudocode, but don’t go any farther. What you
write in C, PHP, SQL, JavaScript, etc., should ultimately be your own. If
you are ever in doubt, feel free to contact us with your specific situation.

2 From Last Time (1:00–3:00)

• We discussed Boolean expressions, which might look like the following:

if (condition || condition)

{

// do this

}

if (condition && condition)

{

// do this

}

The II is the “or” operator and the && is the “and” operator.

• Conditions allow us to handle more than one fork in the road:

if (condition)

{

// do this

}

else if (condition)

{

// do that

}

else

{

// do this other thing

}

Alternatively, we could use switch statements to achieve the same, but
perhaps more elegantly:

switch (expression)

3

Computer Science 50
Fall 2011
Scribe Notes

Week 2 Monday: September 12, 2011
Andrew Sellergren

{

case i:

// do this

break;

case j:

// do that

break;

default:

// do this other thing

}

• When we wanted to complete the same task over and over again, we made
use of loops:

for (initializations; condition; updates)

{

// do this again and again

}

while (condition)

{

// do this again and again

}

Functionally, for and while loops are identical, but in certain cases one
might be more elegant than the other. There’s even one more kind of loop
that might come in handy with Problem Set 1:

do

{

// do this again and again

}

while (condition);

The do-while construct ensures that the code will always execute at least
once. It is particularly useful in prompting the user for input.

3 Bugs (3:00–15:00)

3.1 buggy1.c

• Can you figure out why the program below doesn’t print 10 asterisks as
it’s supposed to?

4

Computer Science 50
Fall 2011
Scribe Notes

Week 2 Monday: September 12, 2011
Andrew Sellergren

/**

* buggy1.c

*

* Computer Science 50

* David J. Malan

*

* Should print 10 asterisks but doesn’t!

* Can you find the bug?

***/

#include <stdio.h>

int

main(void)

{

for (int i = 0; i <= 10; i++)

printf("*");

}

Well, it prints 11 asterisks instead of 10 because the termination condition
is i <= 10 rather than i < 10.

3.2 buggy2.c

• How about buggy2.c, which is also supposed to print 10 asterisks, one
per line, but doesn’t?

/**

* buggy2.c

*

* Computer Science 50

* David J. Malan

*

* Should print 10 asterisks, one per line, but doesn’t!

* Can you find the bug?

***/

#include <stdio.h>

int

main(void)

{

for (int i = 0; i <= 10; i++)

printf("*");

printf("\n");

}

5

Computer Science 50
Fall 2011
Scribe Notes

Week 2 Monday: September 12, 2011
Andrew Sellergren

The second printf statement is not executed within the scope of the
loop because no curly braces are placed around it and the first printf

statement! Once we add the curly braces and recompile, we’ll get one
asterisk per line as we intended. We could also print out the asterisk and
the newline character in a single call to printf to make this cleaner.

3.3 math1.c

• The following program, though syntactically correct, will not compile:

/**

* math1.c

*

* Computer Science 50

* David J. Malan

*

* Computes a total but does nothing with it.

*

* Demonstrates use of variables.

***/

#include <stdio.h>

int

main(void)

{

int x = 1;

int y = 2;

int z = x + y;

}

When we try to compile this program, we get the following error:

math1.c: In function ‘main’:

math1.c:19:9: error: unused variable ‘z’ [-Werror=unused-variable]

cc1: all warnings being treated as errors

Although we correctly computed the sum of x and y, we never actually do
anything with it. Hence the “unused variable” error. We fix this error by
simply calling printf with the value of z in math2.c.

• Note that the compiler also tells us where in the program the error is:
math1.c:19:9. This refers to line 19, character 9.

3.4 math3.c

• math3.c demonstrates a problem with precision:

6

Computer Science 50
Fall 2011
Scribe Notes

Week 2 Monday: September 12, 2011
Andrew Sellergren

/**

* math3.c

*

* Computer Science 50

* David J. Malan

*

* Computes and prints a floating-point total.

*

* Demonstrates loss of precision.

***/

#include <stdio.h>

int

main(void)

{

float answer = 17 / 13;

printf("%.2f\n", answer);

}

17/13 will evaluate to a little over 1, so surely the 32 bits of a float

will be enough to represent this value. When we print it out, we use
the formatting string %.2f to tell printf to display two digits after the
decimal point.

• When we compile and run math3.c, we get the incorrect value 1.00 printed
out. What’s going on? 17 and 13 are both integers, so when we divide
them, C defaults to integer division and provides an integer result. The
digits after the decimal point are truncated, or chopped off.

• To solve this problem, we can make use of typecasting, which allows us to
convert from one variable type to another. We can explicitly cast 13 to
a floating point value by writing (float) 13. Another way to convince
the compiler that 13 should be stored as a floating point value is to write
it as 13.0. We do this in math4.c and thus get the correct answer to our
division problem.

• Don’t forget our discussion of floating point imprecision from last week.
Imprecision in floating points is what enabled the guys in Office Space to
siphon money from Initech.

• Question: why do we cast 13 but not 17? It suffices to cast only one to a
float in order for C to default to floating point division.

• Question: if the result of dividing 17 by 13 was an integer, how did it get
converted to a float in the first place? By assigning it to a variable with
type float, it was implicitly cast to a float. Thus, the decimal point
was added.

7

Computer Science 50
Fall 2011
Scribe Notes

Week 2 Monday: September 12, 2011
Andrew Sellergren

4 More Programming Constructs (15:00–50:00)

4.1 nonswitch.c and switch1.c

• nonswitch.c demonstrates the use of the “and” operator:

/**

* nonswitch.c

*

* Computer Science 50

* David J. Malan

*

* Assesses the size of user’s input.

*

* Demonstrates use of Boolean ANDing.

***/

#include <cs50.h>

#include <stdio.h>

int

main(void)

{

// ask user for an integer

printf("Give me an integer between 1 and 10: ");

int n = GetInt();

// judge user’s input

if (n >= 1 && n <= 3)

printf("You picked a small number.\n");

else if (n >= 4 && n <= 6)

printf("You picked a medium number.\n");

else if (n >= 7 && n <= 10)

printf("You picked a big number.\n");

else

printf("You picked an invalid number.\n");

}

Pretty straightforward: we’re telling the user what kind of number he
picked. Certainly it works as it’s supposed to, but is there a better way
to do this from a style or readability standpoint? You betcha!1 We do so
using a switch, as we see in switch1.c:

1And yes, there’s always a better design. Your program will never quite be perfect. Le
sigh.

8

Computer Science 50
Fall 2011
Scribe Notes

Week 2 Monday: September 12, 2011
Andrew Sellergren

/**

* switch1.c

*

* Computer Science 50

* David J. Malan

*

* Assesses the size of user’s input.

*

* Demonstrates use of a switch.

***/

#include <cs50.h>

#include <stdio.h>

int

main(void)

{

// ask user for an integer

printf("Give me an integer between 1 and 10: ");

int n = GetInt();

// judge user’s input

switch (n)

{

case 1:

case 2:

case 3:

printf("You picked a small number.\n");

break;

case 4:

case 5:

case 6:

printf("You picked a medium number.\n");

break;

case 7:

case 8:

case 9:

case 10:

printf("You picked a big number.\n");

break;

default:

printf("You picked an invalid number.\n");

}

9

Computer Science 50
Fall 2011
Scribe Notes

Week 2 Monday: September 12, 2011
Andrew Sellergren

}

Functionally, this program is identical to nonswitch.c. Arguably, though,
it’s more readable, albeit longer.

• In the above program, each of the case statements is compared with the
variable provided to switch at the beginning of the block. If the case
matches the variable, then its lines of code are executed. Notice that the
cases lump together unless we explicitly type break. Thus 1, 2, and 3 fall
together, 4, 5, and 6 fall together, and 7, 8, 9, and 10 fall together. This is
a common source of bugs in programs! Don’t forget the break statements!
If you were to forget them here, all of the statements would print if you
picked a number between 1 and 3.

• Note that switches are somewhat limited in that they must hinge on a
single variable, so for more complex conditions, if-else if-else might still be
the way to go.

• Question: is there a way to handle large ranges of numbers with switch
statments? No, you would need to use if-else if-else.

4.2 positive1.c

• One type of loop that we haven’t seen an example of is the do-while loop.
do-while loops have a particular use. The while block comes after the do
block, and, as you might expect, executes after it as well. This is useful
when we want to guarantee that some block of code be executed at least
once no matter what. Let’s take a look at an example in positive1.c:

/**

* positive1.c

*

* Computer Science 50

* David J. Malan

*

* Demands that user provide a positive number.

*

* Demonstrates use of do-while.

***/

#include <cs50.h>

#include <stdio.h>

int

main(void)

{

// loop until user provides a positive integer

10

Computer Science 50
Fall 2011
Scribe Notes

Week 2 Monday: September 12, 2011
Andrew Sellergren

int n;

do

{

printf("I demand that you give me a positive integer: ");

n = GetInt();

}

while (n < 1);

printf("Thanks for the %d!\n", n);

}

Obviously, we want to want to ask the user for his input at least once no
matter what. Now we’ll either continue to execute the loop (which will
ask the user for input again) if the user didn’t provide the input we were
looking for (in this case a positive integer).

• It seems a little ugly that we’re declaring the variable n outside the do
block, but the reason is that variables declared within blocks of code like
this only exist within those blocks of code, not outside of them. This is
called scope. If we didn’t declare n outside the loop, it wouldn’t exist when
we wanted to print it out at the end of our program and so the compiler
would throw an error saying ‘n’ undeclared. We could even declare n

outside of the main function so that it would be available to every function
in our program. However, this would make it a global variable, which can
cause unexpected problems and is generally considered to be bad style.

• Question: could we be more specific when we inform the user that he has
provided bad input, perhaps by telling him what his input was? Yes, we
certainly could, but it would take some restructuring and might even be
more easily accomplished without a do-while loop.

• Question: is there a way to destroy a variable within the scope of a pro-
gram? No, but we will have that feature in PHP.

• Question: does n have a default value? In short, it depends. We’ll come
back to this later, but for now, assume that if you don’t explicitly initialize
a variable with a value, it will contain a garbage value, i.e. some collection
of bits that just happen to be stored in the memory that your program
allocated for that variable.

• Question: is there any limit on the number of conditions you can combine
together within the parentheses after while? No. However, you might
want to have an upper limit in mind just for readability’s sake.

• Question: can you reassign the value of n within the code block of the
loop? Yes, just be careful not to redeclare it.

11

Computer Science 50
Fall 2011
Scribe Notes

Week 2 Monday: September 12, 2011
Andrew Sellergren

4.3 positive2.c

• positive2.c implements the exact same program as positive1.c but
with the use of a boolean variable:

/**

* positive2.c

*

* Computer Science 50

* David J. Malan

*

* Demands that user provide a positive number.

*

* Demonstrates use of bool.

***/

#include <cs50.h>

#include <stdio.h>

int

main(void)

{

// loop until user provides a positive integer

bool thankful = false;

do

{

printf("I demand that you give me a positive integer: ");

if (GetInt() > 0)

thankful = true;

}

while (thankful == false);

printf("Thanks for the positive integer!\n");

}

Notice that the return value of GetInt is not actually stored in a variable,
but instead directly compared to 0. If that return value turns out to be
greater than 0, we set the boolean variable thankful to true. Here we
also introduce the == operator, which returns true if it’s two operands
are equal to each other. Why == instead of =? The latter is actually the
assignment operator, so if you wrote thankful = false, thankful would
be assigned the value false instead of compared to the value false. Thus,
no matter what value the user provided, the loop would not repeat itself.

4.4 positive3.c

• positive3.c is a final example that demonstrates the use of the ! or bang
operator. This inverts the value of whatever expression comes after it. So

12

Computer Science 50
Fall 2011
Scribe Notes

Week 2 Monday: September 12, 2011
Andrew Sellergren

if we write while (!thankful), it reads as “while not thankful,” which
actually makes for pretty readable code.

/**

* positive3.c

*

* Computer Science 50

* David J. Malan

*

* Demands that user provide a positive number.

*

* Demonstrates use of !.

***/

#include <cs50.h>

#include <stdio.h>

int

main(void)

{

// loop until user provides a positive integer

bool thankful = false;

do

{

printf("I demand that you give me a positive integer: ");

if (GetInt() > 0)

thankful = true;

}

while (!thankful);

printf("Thanks for the positive integer!\n");

}

4.5 progress1.c

• progress1.c demonstrates use of the sleep function as well as a for loop:

/**

* progress1.c

*

* Computer Science 50

* David J. Malan

*

* Simulates a progress bar.

*

* Demonstrates sleep.

***/

13

Computer Science 50
Fall 2011
Scribe Notes

Week 2 Monday: September 12, 2011
Andrew Sellergren

#include <stdio.h>

#include <unistd.h>

int

main(void)

{

// simulate progress from 0% to 100%

for (int i = 0; i <= 100; i++)

{

printf("Percent complete: %d%%\n", i);

sleep(1);

}

printf("\n");

}

This code is a very simple implementation of a progress bar, counting
from 0 to 100 over the course of 100 seconds or so. As you might have
guessed, the sleep function causes the program to halt execution for some
number of seconds, in this case 1. To use this function, we must include
the unistd.h library.

• The %% is the escape syntax to print a literal percent character.

4.6 progress2.c

• Let’s make our output a little more visually appealing:

/**

* progress2.c

*

* Computer Science 50

* David J. Malan

*

* Simulates a better progress bar.

*

* Demonstrates \r, fflush, and sleep.

***/

#include <stdio.h>

#include <unistd.h>

int

main(void)

{

// simulate progress from 0% to 100%

for (int i = 0; i <= 100; i++)

14

Computer Science 50
Fall 2011
Scribe Notes

Week 2 Monday: September 12, 2011
Andrew Sellergren

{

printf("\rPercent complete: %d%%", i);

fflush(stdout);

sleep(1);

}

printf("\n");

}

Here, we’re using \r instead of \n. \n specifies a newline, but \r specifies
a carriage return, meaning that the cursor will be moved all the way to
the left on the screen. Unfortunately, there is some inconsistency when
it comes to newline characters across different operating systems. Linux
and Mac OS use \r as the standard newline character, but Windows uses
\r\n. This can lead to problems with file conversion.

• If we compile and run this program, we see that the progress indicator
remains on a single line. Using \r causes the next line to overwrite the
previous one which gives the appearance of animation since the lines are
the same length.

4.7 progress3.c

• Programmatically, we can achieve the same effect from progress2.c using
a while loop instead of a for loop:

/**

* progress3.c

*

* Computer Science 50

* David J. Malan

*

* Simulates a better progress bar.

*

* Demonstrates a while loop.

***/

#include <stdio.h>

#include <unistd.h>

int

main(void)

{

int i = 0;

/* simulate progress from 0% to 100% */

while (i <= 100)

{

15

Computer Science 50
Fall 2011
Scribe Notes

Week 2 Monday: September 12, 2011
Andrew Sellergren

printf("\rPercent complete: %d%%", i);

fflush(stdout);

sleep(1);

i++;

}

printf("\n");

}

We have to be careful to include the update condition i++ within our loop
code block somewhere or else our loop will repeat infinitely.

• Question: what would happen if we counted in the reverse direction?
Because the numbers are getting smaller rather than larger, they don’t
fully overwrite each other, so when we move from 100% to 99%, an extra
percent character will be visible through our green cursor. To fix this, we
could pass the formatting string as %3d which would tell the program to
use 3 spaces to print the number, no matter how small or large.

• What’s with the fflush? The operating system normally waits until it
receives a \n character to actually print anything to the screen. This is for
the sake of efficiency, so that it can print everything at once rather than
a few characters at a time. However, in our case, we definitely want the
printing to occur on each iteration of the loop. Calling fflush tells the
operating system to do that. If you wanted to look up what fflush does,
you could actually type man 3 fflush at the command line.2 This opens
up the manual entry on fflush. For a more readable version, you can go
to the C Reference on the course website. For example, the printf entry
contains all the formatting codes.

5 Typecasting (60:00–73:00

5.1 ascii1.c

• As ascii1.c demonstrates, you can actually explicitly convert an integer
to an ASCII character simply by casting it:

/**

* ascii1.c

*

* Computer Science 50

* David J. Malan

*

* Displays the mapping between alphabetical ASCII characters and

* their decimal equivalents using one column.

*

2The 3 is not always necessary, FYI.

16

https://www.cs50.net/resources/cppreference.com/
https://www.cs50.net/resources/cppreference.com/stdio/printf.html

Computer Science 50
Fall 2011
Scribe Notes

Week 2 Monday: September 12, 2011
Andrew Sellergren

* Demonstrates casting from int to char.

***/

#include <stdio.h>

int

main(void)

{

// display mapping for uppercase letters

for (int i = 65; i < 65 + 26; i++)

printf("%c: %d\n", (char) i, i);

// separate uppercase from lowercase

printf("\n");

// display mapping for lowercase letters

for (int i = 97; i < 97 + 26; i++)

printf("%c: %d\n", (char) i, i);

}

This program simply prints all the letters in the alphabet, both lowercase
and uppercase, along with their ASCII mappings to integers.

5.2 ascii2.c

• In grade school, you may have passed a note to your crush or best friend3

that was written in code. A simple way of encrypting the note would have
been to shift each of the letters down by one. So “a” would become “b,”
“b” would become “c,” and so on. How do we express this programmati-
cally? If we cast a letter to a number and then add 1, then cast it back to
a letter, we would effectively shift it down the alphabet by one. ascii2.c
demonstrates that characters and numbers are actually interchangeable in
C:

/**

* ascii2.c

*

* Computer Science 50

* David J. Malan

*

* Displays the mapping between alphabetical ASCII characters and

* their decimal equivalents using two columns.

*

* Demonstrates specification of width in format string.

***/

3Or was she both?

17

Computer Science 50
Fall 2011
Scribe Notes

Week 2 Monday: September 12, 2011
Andrew Sellergren

#include <stdio.h>

int

main(void)

{

// display mapping for uppercase letters

for (int i = 65; i < 65 + 26; i++)

printf("%c %d %3d %c\n", (char) i, i, i + 32, (char) (i + 32));

}

Here we’re simply casting i to a char in order to turn it into its corre-
sponding ASCII character.

5.3 battleship.c

• Let’s make things a little more interesting by implementing the Battleship
gameboard:

1 2 3 4 5 6 7 8 9 10

A o o o o o o o o o o

B o o o o o o o o o o

C o o o o o o o o o o

D o o o o o o o o o o

E o o o o o o o o o o

F o o o o o o o o o o

G o o o o o o o o o o

H o o o o o o o o o o

I o o o o o o o o o o

J o o o o o o o o o o

• So to begin, we’ll probably have to print out that first row of numbers,
which shouldn’t be too hard. The middle of the gameboard isn’t too hard,
either, since we just need to print 10 lowercase o’s in a row. But what
about that first column of letters? Let’s take a look at the code:

/**

* battleship.c

*

* Computer Science 50

* David J. Malan

*

* Prints a Battleship board.

*

* Demonstrates nested loop.

18

Computer Science 50
Fall 2011
Scribe Notes

Week 2 Monday: September 12, 2011
Andrew Sellergren

***/

#include <stdio.h>

int

main(void)

{

// print top row of numbers

printf("\n ");

for (int i = 1; i <= 10; i++)

printf("%d ", i);

printf("\n");

// print rows of holes, with letters in leftmost column

for (int i = 0; i < 10; i++)

{

printf("%c ", ’A’ + i);

for (int j = 1; j <= 10; j++)

printf("o ");

printf("\n");

}

printf("\n");

}

Take a look at the second for loop. Notice we could’ve started at 1 and
iterated through 10, but we chose to start from 0. This is handy in the
first line when we use i as an offset. ‘A’ + 0 gives us A. C actually treats
a char just like an int, so we don’t need to explicitly cast from one to
another.

• The outermost for loop is taking care of moving from one row to another
while the innermost for loop is taking care of printing the column values.

5.4 beer1.c

• Let’s take a simple problem and try to solve it in an efficient way. We
want to print out all the lyrics from “99 Bottles of Beer on the Wall,” but
we obviously don’t want to have to hardcode every line. For starters, we
know that the number 99 counts down to 1, which seems pretty easy to
handle with a loop. But also, the last line of the song will be “1 bottle
of beer on the wall” whereas the last line of all the previous stanzas used
the word “bottles” instead. So we need to convert plural to singular when
it’s appropriate.

/**

* beer1.c

19

Computer Science 50
Fall 2011
Scribe Notes

Week 2 Monday: September 12, 2011
Andrew Sellergren

*

* Computer Science 50

* David J. Malan

*

* Sings "99 Bottles of Beer on the Wall."

*

* Demonstrates a for loop (and an opportunity for hierarchical

* decomposition).

***/

#include <cs50.h>

#include <stdio.h>

int

main(void)

{

// ask user for number

printf("How many bottles will there be? ");

int n = GetInt();

// exit upon invalid input

if (n < 1)

{

printf("Sorry, that makes no sense.\n");

return 1;

}

// sing the annoying song

printf("\n");

for (int i = n; i > 0; i--)

{

printf("%d bottle(s) of beer on the wall,\n", i);

printf("%d bottle(s) of beer,\n", i);

printf("Take one down, pass it around,\n");

printf("%d bottle(s) of beer on the wall.\n\n", i - 1);

}

// exit when song is over

printf("Wow, that’s annoying.\n");

return 0;

}

In this program, we actually ask the user how many bottles of beer he
wants to start with. We capture this value by storing the output of the
GetInt function in the variable n. In the next step, we do some error

20

Computer Science 50
Fall 2011
Scribe Notes

Week 2 Monday: September 12, 2011
Andrew Sellergren

checking by making sure the user’s input is greater than 1. Notice that
in the case the user has given an integer less than 1 as input, we print an
error message and then execute the line return 1. Since main is actually a
function itself, it can have return values, specifically of type int. Generally
speaking, a return value of 0, which is implicitly returned by default,
means “everything went okay.” Any other return value indicates an error
occurred. It’s useful to return different values for different errors so that
when the program breaks, you know exactly where it broke.

• Moving on to the loop, we see that it iterates downward instead of upward.
This is perfectly fine (and suits our purposes of counting down from 99
here) so long as your terminating condition is eventually reached. i-- is
shorthand for i = i - 1.

• We took a shortcut here by writing “bottle(s)” so that the last line of the
song is grammatically correct. We could do this more elegantly by checking
on each iteration of the loop if i == 1 and then acting accordingly. We
might also treat the singular as a special case by iterating down to 1
instead of 0 and then hardcoding the last verse.

21

	Announcements and Demos (0:00–1:00, 50:00–60:00)
	From Last Time (1:00–3:00)
	Bugs (3:00–15:00)
	buggy1.c
	buggy2.c
	math1.c
	math3.c

	More Programming Constructs (15:00–50:00)
	nonswitch.c and switch1.c
	positive1.c
	positive2.c
	positive3.c
	progress1.c
	progress2.c
	progress3.c

	Typecasting (60:00–73:00
	ascii1.c
	ascii2.c
	battleship.c
	beer1.c

