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1 Announcements and Demos (0:00–4:00, 8:00–10:00)

• Ever wanted to see Star Wars drawn completely in ASCII art? Here is
your chance. ASCII art is simply a form of drawing that uses only the
characters from ASCII.

• To set the stage for our discussion of cryptography, we’ll watch a scene
from Spaceballs in which King Roland reveals that the password to the
air shield is 12345.

• Office Hours will be held tonight and tomorrow night in Lowell from 9
p.m. to midnight. The houses are working on installing additional access
points so that wireless speeds will be improved.

• If you’re having issues with the Appliance, please reach out to us via
help@cs50.net or otherwise. We also have a new solution for those of you
with older or otherwise resource-limited computers like netbooks that will
allow you to connect to our servers.

2 Cryptography (4:00–8:00)

• Odds are that some of you out there have a password that’s not too much
stronger than King Roland’s. Even so, your password would not be stored
as 12345, but more likely as something like this:

{crypt}$1$LlBcWwQn$pxTB3yAjbVS/HTD2xuXFI0

For security purposes, passwords are not generally stored in plaintext, but
in ciphertext. Thus, when you are told by some IT person that you can’t
recover your password, but you can change it, that’s because he does not
have access to the plaintext, but only the ciphertext, which he is unable
to decipher.

• Passwords are stored in ciphertext on servers to minimize the impact of a
malicious user gaining access. If this user steals the list of user’s passwords,
he still has to decrypt them, which is mathematically very difficult. Even
the server itself is unable to decrypt passwords in a timely fashion. To
do this, it would need to store the secret key that was used to encrypt
the passwords, which would defeat the purpose since a malicious user who
gained access to the server would then be able to steal the list of user’s
passwords as well as the secret key used to encrypt them.

• So if the server can’t decrypt the ciphertext version of your password,
how does it know that you typed in the right password when you login?
The ciphertext version of your password, or more properly the hash of
your password, is the result of a mathematical operation performed on
the plaintext. This mathematical operation is deterministic, so if it is
applied to what you typed in when logging in, the result should match the
hash stored on the server.
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• If you read in the news that a website was hacked and its users’ passwords
were stolen, it might be the case that the website wasn’t even encrypting
passwords before storing them. In any case, if you were one of the users
of this website, your best bet is to change your password immediately.

3 From Last Time (10:00–34:00)

• Recall our attempt to programmatically output the lyrics of the annoying
song “99 Bottles of Beer on the Wall”:

/****************************************************************************

* beer1.c

*

* Computer Science 50

* David J. Malan

*

* Sings "99 Bottles of Beer on the Wall."

*

* Demonstrates a for loop (and an opportunity for hierarchical

* decomposition).

***************************************************************************/

#include <cs50.h>

#include <stdio.h>

int

main(void)

{

// ask user for number

printf("How many bottles will there be? ");

int n = GetInt();

// exit upon invalid input

if (n < 1)

{

printf("Sorry, that makes no sense.\n");

return 1;

}

// sing the annoying song

printf("\n");

for (int i = n; i > 0; i--)

{

printf("%d bottle(s) of beer on the wall,\n", i);

printf("%d bottle(s) of beer,\n", i);
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printf("Take one down, pass it around,\n");

printf("%d bottle(s) of beer on the wall.\n\n", i - 1);

}

// exit when song is over

printf("Wow, that’s annoying.\n");

return 0;

}

First, we did some error checking, deciding not to reprompt the user if he
provided bad input, but instead to exit with an return code of 1. Second,
we print out the four-line stanza for each of n bottles of beer. We dynam-
ically insert the number of bottles of beer using printf and formatting
strings, which even allow us to print out the value of i - 1 in the last line
of each stanza.

• Throughout the semester, we’ll encourage you to bang on your code before
submitting it, mostly because we’ll be doing the exact same thing when
we grade it. Your code may work perfectly for 99 normal cases, but if it
doesn’t work for 1 or 2 so-called corner cases, then you’re on the hook.
Think about the real-world implications of improperly handling corner
cases. This is what results in your frustration with a certain program
when it crashes if you type some unusual key combination, for example.
In this program, corner cases would be unusual numbers that the user
provides, perhaps 0 or 1. We want to make sure that our program never
prints out “-1 bottle(s) of beer on the wall.” In fact, it won’t because of
our loop condition i > 0. But, to be sure of that, we should try providing
it unusual inputs anyway. This would help us identify a mistake such as
using i >= 0 instead.

• Question: how do you use return 1 to get another integer from the user?
You don’t. This was a design decision on our part that if the user provides
bad input, the program will exit rather than reprompt him.

• Question: how do you use the return code of 1? Soon, we’ll introduce
debuggers, which will allow you to examine the return codes of your pro-
grams as well as step through them line by line.

• How can we improve on the current implementation? First, we can handle
the corner case of there being only 1 bottle of beer left and thus a need
for singular words in the stanza. Second, we can make our main function
a little cleaner by using hierarchical decomposition. If you find yourself
copying and pasting snippets of code in your programs, it’s a good sign
that you should be using hierarchical decomposition instead, which is to
say that you should be breaking your program down into smaller func-
tions. Thus far, we’ve only written a single function, main, for each of our
programs, but here we see it can be useful to write more than one:
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/****************************************************************************

* beer4.c

*

* Computer Science 50

* David J. Malan

*

* Sings "99 Bottles of Beer on the Wall."

*

* Demonstrates hierarchical decomposition and parameter passing.

***************************************************************************/

#include <cs50.h>

#include <stdio.h>

// function prototype

void chorus(int b);

int

main(void)

{

// ask user for number

printf("How many bottles will there be? ");

int n = GetInt();

// exit upon invalid input

if (n < 1)

{

printf("Sorry, that makes no sense.\n");

return 1;

}

// sing the annoying song

printf("\n");

while (n)

chorus(n--);

// exit when song is over

printf("Wow, that’s annoying.\n");

return 0;

}

/*

* Sings about specified number of bottles.
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*/

void

chorus(int b)

{

// use proper grammar

string s1 = (b == 1) ? "bottle" : "bottles";

string s2 = (b == 2) ? "bottle" : "bottles";

// sing verses

printf("%d %s of beer on the wall,\n", b, s1);

printf("%d %s of beer,\n", b, s1);

printf("Take one down, pass it around,\n");

printf("%d %s of beer on the wall.\n\n", b - 1, s2);

}

As before, we quit if the user provides input. This time, however, the
actual printing of the song is accomplished in two lines. We’ve effectively
outsourced the singing of the song to a function named chorus. Within
chorus, we now have printf statements with more than one formatting
string. This, in addition to the two lines of code at the beginning of
chorus, addresses the grammar problem we ran into before whereby the
singular case wasn’t handled very elegantly.

• When defining the function chorus, we specified its return value and the
type of input it takes. In this case, chorus returns nothing so its return
type is void. The input it takes is a single argument of type int. Be-
cause this integer represents a number of bottles, we chose the name b to
represent it. Thereafter in the function, whatever we passed into chorus

will be referenced by the name b. So in main, we pass a variable named
n to chorus, but the chorus function will actually make a copy of this
variable and name it b.

• What about those first two lines of chorus? Well, they might make more
sense if we rewrote them as follows:

string s1;

if (b == 1)

s1 = "bottle";

else

s1 = "bottles";

string s2;

if (b == 2)

s2 = "bottle";

else

s2 = "bottles";
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First, we declare a string named s1. Second, we initialize s1 to the value
“bottle” if the number of bottles is 1, else we initialize it to the value
“bottles.” Similarly, we declare and initialize s2 afterward. After we’ve
declared and initialized s1 and s2 like so, we substitute them into the
lyrics where previously we had the word “bottle(s)” for every case. Note
that we need two different strings because when there are 2 bottles, the last
line of the stanza must read “1 bottle of beer on the wall” whereas when
there is 1 bottle, the last line must read “0 bottles of beer on the wall.”
The first two lines of code in chorus are actually just a more succinct way
of writing these if-else conditions. Also note that in the expanded if-else
conditions above, we had to declare the variables s1 and s2 outside of the
if and else blocks in order that they would exist outside of those blocks.
We called this a problem of scope last time.

• Question: if you declare a variable in main, will it be accessible to other
functions? No. Again, this is a problem of scope. A good rule of thumb is
that variables only exist between the curly braces within which they are
declared.

• One last thing to take away from this program: above our definition of
main, we have the following lines of code:

// function prototype

void chorus(int b);

Because C is an older language, we have to tell the compiler that the
chorus function exists before we try to use it. If we remove this func-
tion prototype, we’ll get a compiler error stating “implicit declaration of
function.” We could actually fix this error by moving the entire implemen-
tation of chorus above main, but as your programs get more and more
complex, this solution will be less and less ideal. Imagine you are reading
through someone else’s code to figure out what it does. You don’t want to
read through a number of helper functions before you get to main, which
is the heart of the program. So, to compromise, we write function proto-
types at the tops of our programs1 and the function implementations at
the bottoms of our programs.2

• Question: why do you have to tell the compiler what the type of a func-
tion’s output is; couldn’t it infer this from your program? Yes and no.
In short, this is a way of improving the probability of correctness in your
program by forcing this type to match the type of the values you return
at different places in your program, which might be nested deep within
several conditions.

1Or in separate files.
2Or in separate files.
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4 Scope and the Stack (34:00–59:00)

4.1 buggy3.c

• As we mentioned earlier, variables belong to the functions that manipulate
them. This is the concept of scope. Variable scope can introduce some
subtle bugs, as we’ll soon see in buggy3.c:

/****************************************************************************

* buggy3.c

*

* Computer Science 50

* David J. Malan

*

* Should swap two variables’ values, but doesn’t!

* Can you find the bug?

***************************************************************************/

#include <stdio.h>

// function prototype

void swap(int a, int b);

int

main(void)

{

int x = 1;

int y = 2;

printf("x is %d\n", x);

printf("y is %d\n", y);

printf("Swapping...\n");

swap(x, y);

printf("Swapped!\n");

printf("x is %d\n", x);

printf("y is %d\n", y);

}

/*

* Swap arguments’ values.

*/

void

swap(int a, int b)
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{

int tmp = a;

a = b;

b = tmp;

}

Everything looks fine, but when we run the program, we get the following
output:

x is 1

y is 2

Swapping...

Swapped!

x is 1

y is 2

• Could it be that we left out the function prototype for swap? No, because
the compiler would’ve yelled at us.

• Looking at the implementation of swap, it appears correct. We store the
value of one variable in a temporary variable, then overwrite its value, then
overwrite the other variable’s value with the value stored in the temporary
variable. We couldn’t simply write a = b and b = a because we would
lose the value of a and both would assume the value of b.3

• It appears that a and b are being properly swapped, but the values aren’t
being stored in x and y. What’s really happening when we call swap is
that we’re passing in copies of the variables x and y, not the variables
themselves. So while swap successfully swaps the values of a and b, it
doesn’t actually have any effect on the values of x and y. At the end of
swap, before it returns, a has the value 2, b has the value 1, x has the value
1, and y has the value 2. As soon as swap returns, however, a, and b are
forgotten and x and y retain their original values. In a few weeks, we’ll be
able to fix this problem by using pointers, but for now just assume that
functions cannot modify variables that are defined outside their scope.

4.2 The Stack

• What’s actually going on in memory when we deal with these variables?
Variables are stored in RAM, a temporary kind of memory, as opposed to
on the hard disk, a more permanent kind of memory. We can visualize a
computer’s RAM like so:

3As a sidenote, it is actually possible to swap two variables’ values without using a tem-
porary variable, but more on that later.
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According to this visualization, we can number all of the bytes in a com-
puter’s RAM from 0 to 2 billion or so (assuming your computer has 2 GB
of RAM). When we execute a program, then, the variables that belong to
main (first its arguments or parameters, then its locals) will be assigned to
the lowest numbered bytes in the program’s memory, which appear here
at the bottom of this rectangle. When main calls another function, say
foo, that function’s variables get stacked on top of main’s in memory.

• Interestingly, often when a website is hacked it is by a buffer overrun
attack, which is just a fancy way of saying that a malicious user provided
some input that was too large to be stored properly in one of these inner
rectangles and consequently overwrote some of the data in another inner
rectangle. As this visualization shows, foo lives separately from main, so
it doesn’t (or shouldn’t) have access to main’s variables.

4.3 Global Variables

• One way to fix this problem of scope is to use global variables. These
variables are unique in that they can be referenced by any function in a
program. Take a look at global.c to see how they are used:

/****************************************************************************

* global.c

*

* Computer Science 50

* David J. Malan

*

* Increments variables.

*

* Demonstrates use of global variable and issue of scope.
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***************************************************************************/

#include <stdio.h>

// global variable

int x;

// function prototype

void increment(void);

int

main(void)

{

printf("x is now %d\n", x);

printf("Initializing...\n");

x = 1;

printf("Initialized!\n");

printf("x is now %d\n", x);

printf("Incrementing...\n");

increment();

printf("Incremented!\n");

printf("x is now %d\n", x);

}

/*

* Increments x.

*/

void

increment(void)

{

x++;

}

We declare the variable x outside the scope of both increment and main,
right above the function protoype. This solves our problem in that x can be
referenced in any of the functions in this file, but it’s not the cure-all that
it might seem. Global variables are generally considered bad style because
they’re hard to keep track of. If you’re using code from other libraries, for
example, the names of your global variables might inadvertently conflict
with the names of library variables and introduce subtle bugs into your
program.
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• Note that the increment function returns void and takes void as ar-
guments because it can reference x without it having been passed as an
argument.

4.4 Segmentation Faults

• Let’s mess with your minds a little bit by writing a program called bad.c

that looks as follows:

#include <stdio.h>

void bad(int n);

int

main(void)

{

int n = 0;

bad(n);

}

void

bad(int i)

{

printf("%d\n",i);

i++;

bad(i);

}

We could actually call bad’s argument n instead of i, since it’s in a different
scope than main.

• Why is this program bad?4 Because bad always calls itself, it will repeat
infinitely. Not only that, each time it calls itself, another chunk of memory
will be reserved for its variables and parameters, as our visualization of the
stack showed. Since our outer rectangle is finitely big, we’ll eventually run
out of space for adding inner rectangles. That is, we’ll run out of memory,
or worse, we’ll overwrite memory that is being used for other purposes by
the operating system. Let’s look at a more complete visualization of a
program’s memory:

4Because that’s it’s name, duh.
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Notice that the stack grows upward as we call more and more functions,
but something called the heap grows downward. As this visualization
suggests, the two can potentially collide if one or the other takes up too
much space. When we compile and run bad.c, this happens very quickly
and we get a message saying that a segmentation fault has occurred. This
is the operating system’s safety mechanism which kills a program when it
tries to touch memory that doesn’t belong to it. You may have heard of the
concept of cracking a program, meaning that the need for an authorization
code or a serial number is bypassed so that you can install Microsoft Word
or Photoshop without purchasing it. In effect, these cracks are simply
touching memory that they don’t own and causing the program to skip
past the simple if condition that asks the user to provide an authorization
code or serial number.

5 Arrays and Command-line Arguments (59:00–73:00)

• Conceptually, strings are simply collections of char’s, stored one after
another in memory. If we were to store “hello” as a string, each character
of it would be assigned one byte of memory and an additional byte of
memory would be stored at the end. This additional byte is \0, which
signifies the end of a string and actually represents a byte whose bits are
all 0. Note that there isn’t a \0 after every word you enter, but only after
every string you enter, since a string can comprise multiple words and a
space can be represented as a char just like any other letter.

• Recall from FruitcraftRPG that Scratch allowed you to store a collection
of related variables in what was called a list. This is equivalent to an array
in C.
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5.1 argv1.c

• Thus far, we have be defining main as a function that takes no argu-
ments, represented as void. However, we can actually define main as
taking arguments which we pass into the program at the command line.
We’ve already made use of command-line arguments every time we ran
the program make. Running make beer4, for example, passes “beer4” as
a command-line argument to make. Let’s see how we might handle these
command-line arguments in argv1.c:

/****************************************************************************

* argv1.c

*

* Computer Science 50

* David J. Malan

*

* Prints command-line arguments, one per line.

*

* Demonstrates use of argv.

***************************************************************************/

#include <stdio.h>

int

main(int argc, char *argv[])

{

// print arguments

printf("\n");

for (int i = 0; i < argc; i++)

printf("%s\n", argv[i]);

printf("\n");

}

argc holds the number of command-line arguments that you passed to
the program. By default, the 0th argument is always the name of your
program, so argc will always be at least 1.

• Recall that we’ve been using string as a shorthand for char *, so we
could rewrite the second argument to main as string argv[] if we include
the CS50 Library.

• argv is a variable that holds the command-line arguments that were passed
into the program. The square brackets after argv indicate that it’s an
array. In fact, it is an array of strings. In order to access the strings it
holds, you can index into it by specifying a number between the square
brackets. argv[0], for example, gives the 0th argument which is always
the name of the program.
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• When we compile and run this program, we see that it prints out the
command-line arguments we provided it.

5.2 argv2.c

• argv2.c demonstrates what a string actually is:

/****************************************************************************

* argv2.c

*

* Computer Science 50

* David J. Malan

*

* Prints command-line arguments, one character per line.

*

* Demonstrates argv as a two-dimensional array.

***************************************************************************/

#include <stdio.h>

#include <string.h>

int

main(int argc, char *argv[])

{

// print arguments

printf("\n");

for (int i = 0; i < argc; i++)

{

for (int j = 0, n = strlen(argv[i]); j < n; j++)

printf("%c\n", argv[i][j]);

printf("\n");

}

}

When we compile and run argv2.c, we see that it prints out the command-
line arguments, one character per line. Programmatically, then, we are
iterating not only over the arguments, but over each character in each
argument. We can do this because argv is an array of strings and a string
is actually an array of characters.

• Notice that in the first part of parentheses after the second for, we ini-
tialize not just j, but also n. We do this simply by separating them with
a comma. strlen returns the length of a string. Because argv is actually
an array of strings, we know that argv[i] is a string. Going one level
deeper5, we can access the jth character in argv[i] like so: argv[i][j].

5Deeper and deeper.
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6 Teaser (73:00–75:00)

• As a teaser for next time, check out how using strings as arrays and
characters as integers can allow us to implement Caesar’s cipher, just as
little Ralphie discovered in this clip from A Christmas Story.
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