
Computer Science 50
Fall 2011
Scribe Notes

Week 4 Monday: September 26, 2011
Andrew Sellergren

Contents

1 Announcements and Demos (0:00–1:00, 4:00–5:00) 2

2 Problem Set 3 (1:00–4:00) 2

3 From Last Time (5:00–10:00) 2

4 Debugging (10:00–26:00) 3

5 Recursion and Merge Sort (24:00–60:00) 5

1

Computer Science 50
Fall 2011
Scribe Notes

Week 4 Monday: September 26, 2011
Andrew Sellergren

1 Announcements and Demos (0:00–1:00, 4:00–5:00)

• First on the docket is a receipt that shows the price for various items at
a restaurant as $1.48999, a clear indication of floating point errors in the
cash register. Computer science in the real world!

• CS50 wifi is now available in Sanders! The SSID is cs50 and the password
is 12345678. Yup.

• Another CS50 Lunch is this Friday, this time with an alumnus who now
works at a venture capital firm called NEA. RSVP if you’d like to join!

2 Problem Set 3 (1:00–4:00)

• This week’s problem set will task you with building The Game of Fifteen.
Whereas for the previous problem sets, you started from scratch,1 for this
problem set, you will start with distribution code, a skeleton framework of
files and functions. Our goal is to get you accustomed to designing larger
programs and working with someone else’s code.

• In the Hacker Edition, you are tasked with implementing the game as
well as a solver mode. When asked for a tile to move, you should be able
to enter GOD to cause the tiles to move automatically until the puzzle is
solved.

• Also in Problem Set 3, you’ll be asked to implement binary search and one
of the sorting algorithms we’ve looked at so far, perhaps bubble sort or
selection sort which are in O(n2). If you’re taking on the Hacker Edition,
you’ll also need to implement a sorting algorithm, but one that runs in
O(n).

3 From Last Time (5:00–10:00)

• We looked at linear search as compared to the much-faster binary search.

• In terms of sorting algorithms, we looked at bubble sort, which works by
comparing two adjacent values, swapping them if they are out of order,
and stopping when no more swaps are made. We also looked at selection
sort, which works by finding the smallest number and placing it in its
correct position on each pass. We discovered that selection sort takes
n2 steps in both the best- and worst-case scenarios whereas bubble sort
takes n2 steps in the worst-case scenario, but only n steps in the best-case
scenario.

• As this demo shows, there are many more sorting algorithms than the
ones we looked at, most of which are much faster than bubble sort and

1Or from Scratch, lol!

2

http://img.thedailywtf.com/images/200902/errord/DSC00669.JPG
http://cs50.net/rsvp
http://en.wikipedia.org/wiki/Fifteen_puzzle
http://www.sorting-algorithms.com/

Computer Science 50
Fall 2011
Scribe Notes

Week 4 Monday: September 26, 2011
Andrew Sellergren

selection sort.2 Even Barack Obama knows that bubble sort isn’t the best
solution.

4 Debugging (10:00–26:00)

• Thus far, you have probably only used printf to debug your programs.
And, of course, if you have a syntax error in your program, GCC will
point it out, albeit somewhat cryptically. As your programs get more
complicated, this kind of debugging becomes unwieldy.

• GDB, or GNU Debugger, allows you to step through your program line
by line while it’s executing. In this way, you can examine the state of the
program in realtime, printing out variables and peeking at the stack as
needed. You can also set breakpoints in GDB which allow you to pause
your program’s execution at a specific line so that you don’t have to step
through all the previous ones to get to it.

• To demonstrate the use of GDB, we’ll examine buggy3.c. Recall this is the
program that aimed to swap the values of two variables but failed to do so
because of issues with scope: although the values were actually swapped in
the function swap, as soon as that function returned, the variables seemed
to take on their original values. This bug was due to our passing variables
by value to the swap function, rather than by reference. We saw this
pictorially when we visualized the program’s stack, which showed that
main’s variables were in a completely different section of memory than
swap’s variables.

• If we run buggy3, we can confirm that the values of x and y aren’t actually
swapped. Now, instead of running buggy3 directly, let’s run gdb buggy3

which will run our program in the context of GDB and allow us to step
through it. After the warranty and copyright information is printed, we
are presented with a prompt that looks like this:

(gdb)

Here, if we type the command run, our program will execute just as it
would outside of GDB and the message “Program exited normally.” will
be printed. This message indicates that main returned 0.

• To set a breakpoint at the beginning of the main function, we execute the
following command from the GDB prompt.

(gdb) break main

This gives output that looks something like the following:

2Bogosort is still the best.

3

http://www.youtube.com/watch?v=k4RRi_ntQc8

Computer Science 50
Fall 2011
Scribe Notes

Week 4 Monday: September 26, 2011
Andrew Sellergren

Breakpoint 1 at 0x804842d: file buggy3.c, line 21.

The 0x804842d is a number in hexadecimal, which is a base system like
decimal or binary, and represents a memory address. Line 21 is where
main begins in our source code.

• Now if we type run at the prompt, we get the following:

Starting program: /home/malan/src2/buggy3

Breakpoint 1, main () at buggy3.c: 21

21 int x = 1;

Our program has paused execution right before line 21. Line 21 will exe-
cute if we type the command next or n, for short. Once we step past the
lines of code that initialize x and y, we can print out the value of y like
so:

(gdb) print y

$1 = 2

As we expect, the value of y at this point is 2. The $1 allows us to refer
back to variables we’ve already printed later in the program’s execution.

• Executing next a few more times gives us the program’s output commin-
gled with GDB’s:

(gdb) next

24 printf("x is %d\n", x);

(gdb) next

x is 1

25 printf("y is %d\n", y);

(gdb) next

y is 2

26 printf("Swapping...\n");

(gdb) next

Swapping...

27 swap(x, y);

At line 27, we’re about to call the function swap. If we next again, we go
straight to line 28 where “Swapped!” is printed. Then if we try to print
x and y, they’ll have the values 1 and 2, respectively.

• So far, this exercise hasn’t been very useful because it only confirmed what
we already know: the program isn’t working as intended. If we want to
know why it’s not working as intended, we’ll need to dig a little deeper.
Let’s type run and say yes when GDB asks us if we want to start the
program over again. Once again, GDB will stop us at the beginning of
main. Now let’s try printing x before it’s been initialized:

4

Computer Science 50
Fall 2011
Scribe Notes

Week 4 Monday: September 26, 2011
Andrew Sellergren

$6 = 3219444

This is a strong reminder to initialize your variables before you use them!
If we don’t explicitly assign a value to x, we have no way of knowing
what it contains. More than likely, it will contain some garbage value, the
remnants of whatever was in memory there previously.

• If we want to actually examine what’s going on inside swap, we will type
step when we reach line 27. This tells GDB to step inside any functions
that are called on the next line. Stepping into swap gives us the following:

(gdb) step

swap (a=1, b=2) at buggy3.c:41

41 int tmp = a;

Once we get to line 44, we can print a and b to see that they contain
the values 2 and 1, respectively. This confirms that they’ve actually been
swapped. However, as soon as we step out of the swap program, we can
print x and y to see that they retain their original values and we can also
verify that a and b no longer exist if we try to print them. Although this
example is somewhat elementary, hopefully you can see how useful GDB
will be as your programs get more and more complex.

• Check out the GDB section on the Resources section of the course website.
Admittedly there’s a learning curve with GDB and it might be tempting
to leave off using it till later in the course, but if you take the time to
experiment with it now, it will pay huge dividends even for this week’s
problem set.

• Question: will GDB allow you to print something like an array? It will do
its best. It should show you all of the members of an array, for example,
with the possible exception of if you start passing that array around to
different functions, in which case GDB might lose track of its length and
have trouble printing it.

• As a sidenote, know that you can examine the contents of a core file by
running gdb <program> core from the command line. Recall that we
dumped a file like this earlier when we wrote a function that called itself
infinitely and eventually ran out of memory for new stack frames.

5 Recursion and Merge Sort (24:00–60:00)

• A function which calls itself is said to be recursive. Unlike the recursive
function we wrote earlier as a demonstration of a segmentation fault, most
recursive functions have branches in their logic that dictate when the
function should stop calling itself.

5

http://cs50.net/resources/

Computer Science 50
Fall 2011
Scribe Notes

Week 4 Monday: September 26, 2011
Andrew Sellergren

• Consider the following pseudocode which is actually an implementation of
merge sort:

On input of n elements:

If n < 2

Return.

Else

Sort left half of elements.

Sort right half of elements.

Merge sorted halves.

If someone asked you how you would sort a list of items, you could actually
push back on them and say that you would sort the left half and sort
the right half, then merge the two sorted halves. In turn, this person
could follow up and ask you how you would sort each half. In response,3

you could again say that you would sort the left half and sort the right
half, then merge the two sorted halves. As you can see, this algorithm,
which is actually a description of merge sort, lends itself quite naturally to
recursion. Although it feels like you’re just being a jerk,4 you are in fact
answering the question. At some point in this back and forth, you’ll get
to a point where one half of the original list is actually only one item. At
that point, that half of the list is already sorted, and your work is done.

• To unravel this concept of recursion, let’s begin with a non-recursive func-
tion that sums up the numbers 1 through n:

/**

* sigma1.c

*

* Computer Science 50

* David J. Malan

*

* Adds the numbers 1 through n.

*

* Demonstrates iteration.

***/

#include <cs50.h>

#include <stdio.h>

// prototype

int sigma(int);

3Because you’re a jerk, perhaps?
4Perhaps because you are.

6

Computer Science 50
Fall 2011
Scribe Notes

Week 4 Monday: September 26, 2011
Andrew Sellergren

int

main(void)

{

// ask user for a positive int

int n;

do

{

printf("Positive integer please: ");

n = GetInt();

}

while (n < 1);

// compute sum of 1 through n

int answer = sigma(n);

// report answer

printf("%d\n", answer);

}

/*

* Returns sum of 1 through m; returns 0 if m is not positive.

*/

int

sigma(int m)

{

// avoid risk of infinite loop

if (m < 1)

return 0;

// return sum of 1 through m

int sum = 0;

for (int i = 1; i <= m; i++)

sum += i;

return sum;

}

Note that in our prototype for the sigma function, we don’t need to specify
a name for the argument, only a type. We use a do-while loop to prompt
the user for a positive integer and to keep prompting him if he doesn’t
provide one. In our sigma function, we do a sanity check to make sure
the number it’s been passed isn’t less than 1 and then we iterate up to
the number the user provided, summing along the way.

7

Computer Science 50
Fall 2011
Scribe Notes

Week 4 Monday: September 26, 2011
Andrew Sellergren

• If we compile and run sigma1.c, we see that it works perfectly correctly.
Well, almost. What happens if we give it a number larger than 4 billion,
the maximum that a 32-bit integer can store? The program seems to loop
infinitely, although it might just be choking on the very large number.

• Interestingly, we can implement the same functionality in an entirely dif-
ferent way using recursion. After all, the sum of the numbers 1 through n
is equivalent to n plus the sum of the numbers 1 through n− 1. And the
sum of the numbers 1 through n− 1 is equivalent to n− 1 plus the sum of
the numbers 1 through n− 2. And so on until we’re considering the sum
of the numbers 0 through 0, which is, of course, 0. This case which ends
our recursion we’ll call the base case. Take a look at how we utilize this
approach in sigma2.c:

/**

* sigma2.c

*

* Computer Science 50

* David J. Malan

*

* Adds the numbers 1 through n.

*

* Demonstrates recursion.

***/

#include <cs50.h>

#include <stdio.h>

// prototype

int sigma(int);

int

main(void)

{

// ask user for a positive int

int n;

do

{

printf("Positive integer please: ");

n = GetInt();

}

while (n < 1);

// compute sum of 1 through n

8

Computer Science 50
Fall 2011
Scribe Notes

Week 4 Monday: September 26, 2011
Andrew Sellergren

int answer = sigma(n);

// report answer

printf("%d\n", answer);

}

/*

* Returns sum of 1 through m; returns 0 if m is not positive.

*/

int

sigma(int m)

{

// base case

if (m <= 0)

return 0;

// recursive case

else

return (m + sigma(m-1));

}

Our main method is identical to that of sigma1.c. All that differs is sigma,
which seems simple even when implemented with recursion. Without the
comments, we have but 4 lines of code in sigma. As you can see, our
base case is when m is less than or equal to 0. Note that we’re making a
decision here not to sum up negative numbers. In our recursive case, we
call sigma and pass it one less than our current number. That’s all there
is to it!

• The function we wrote that called itself infinitely was an example of a
recursive function without a base case.

• When we compile and run sigma2.c, we see that it works very well for
small numbers, but a number like 1000000 still causes a segmentation
fault. It seems that even though our function does not call itself infinitely,
it calls itself enough times that it runs out of memory in which to place
new stack frames. Recursion might present a problem in this case, but
in the case of sorting, it should still be a reasonable solution. With our
divide-and-conquer approach, even a list of size 1000000 will only require
approximately 20 steps and thus 20 function calls.

• On stage we have 8 milk crates with the numbers 1 through 8. Joseph has
volunteered to be our sorter as we follow the algorithm for merge sort:

4 2 6 8 1 3 7 5

9

Computer Science 50
Fall 2011
Scribe Notes

Week 4 Monday: September 26, 2011
Andrew Sellergren

• First, we ask if the number of elements (8) is less than 2. Since it’s not, we
continue to the recursive case, which tells us to sort the left half. Second,
we again ask if the number of elements (4) is less than 2. Since it’s not,
we continue to the recursive case, which tells us to the sort the left half.
We continue in this vein until we’re only considering 1 element, which is
the left half of the left half of the left half of the original list. Because 1 is
less than 2 and a list with only 1 element is inherently sorted, we finally
return.

• Once we return, we reach the step “Sort right half.” Again, this half has
only 1 element, so it is already sorted. That leads us to the merge step.
In this case, the left half is 4 and the right half is 2. Merging them is
actually where the magic happens: we compare 4 and 2 and put 2 to the
left of 4. Now our array looks as follows:

2 4 6 8 1 3 7 5

Finally, we’ve gotten through all the steps of the sort algorithm once.
Now, to pick up where we left off, we need to sort the right half of
our size-4 array. Because the number of elements (2) is not less than
2, we again divide and conquer. The left half, 6, and right half, 8, are
both sorted because they contain only one element each, so we go to
the merge step. 6 is already to the left of 8, so our merging is also al-
ready done. So the left half and the right half of our size-4 array are
sorted, meaning we need to merge them. All the numbers are in their
correct order already, so the left half of our original size-8 array is sorted:

2 4 6 8 1 3 7 5

• When we repeat this algorithm for the right half of the original size-8 ar-
ray, we get the following:

2 4 6 8 1 3 5 7

Now that our left half and right half of the entire array are sorted, we
need to merge them. Here is where things get interesting. Although thus
far we’ve been sorting in place, at this stage, we need a second, empty
array of size 8 in which to put our final sorted numbers.

• In this final merge step, we will walk through each element of both halves,
comparing them as we go. 2 is greater than 1, so we put 1 into the first
position in our second, empty array:

2 4 6 8 3 5 7

1

Now our right half has 3 as its leftmost element, so we compare it with

10

Computer Science 50
Fall 2011
Scribe Notes

Week 4 Monday: September 26, 2011
Andrew Sellergren

the leftmost element of the left half, 2, and realize that we need to put 2
into the second array next:

4 6 8 3 5 7

1 2

The left half now has 4 as its leftmost element, so we compare it with
the leftmost element of the right half, 3, and choose the 3. If we continue
in this vein, we put 4, then 5, then 6, then 7, then 8. And we’re done!

• Now, how many steps did this take? Although we used the divide-and-
conquer approach, the answer isn’t just log n. At the very least, we had
to examine each element once, so our lower bound here is n steps. But
it appears that every time we need to complete the merge step, we have
to walk through both halves to do so. We can simplify this by saying it
takes n steps per merge. How many merges are there? log n since there
are log n divisions. So our merge sort algorithm is in O(n log n).

• Let’s try to represent merge sort’s running time, T (n), formulaically:

Let T (n) = running time if list size is n.

T (n) = 0 if n < 2

T (n) = T (n/2) + T (n/2) + n if n > 1

That is, we have to sort the left half, which takes T (n/2), sort the right
half, which takes T (n/2), and merge, which takes n!

• Ex: Suppose we want to find T (16):

T (16) = 2T (8) + 16

T (8) = 2T (4) + 8

T (4) = 2T (2) + 4

T (2) = 2T (1) + 2

T (1) = 0

T (16) = 2(2(2(2(0 + 2) + 4) + 8) + 16) = 64

We add 16 in the first step because it takes 16 steps to merge both lists
of 8. Eventually we boil down to T (1), which is 0 because a list of size
one is already sorted. Does our final result, 64, agree with our original
determination of O(n log n). Well, 16 × log 16 = 64, so yes. Compare this
to O(n2), which would take 162 = 256 steps. Already we’re reaping the
benefits.

• Have a listen to What different sorting algorithms sound like! They all
sound like Pac-Man to me.

11

http://www.youtube.com/watch?v=t8g-iYGHpEA

	Announcements and Demos (0:00–1:00, 4:00–5:00)
	Problem Set 3 (1:00–4:00)
	From Last Time (5:00–10:00)
	Debugging (10:00–26:00)
	Recursion and Merge Sort (24:00–60:00)

